CORH N III

This assembly instruction does not replace the usage information contained in the ETA. This instruction and the ETA must be available at the point of use!

All documents can be downloaded from
www.flamro.de/services/downloads.

Description

The CORH N III consists of a high performance intumescent material that is wrapped around the pipe to be sealed off in multiple layers, with or without insulation. In case of fire, the intumescent material responds with strong expansion pressure and closes the structural element opening permanently, preventing the ingress of fire and smoke. The wrap is attached to both sides on walls, and from bottom side on floors.

CORH N III

Areas of application

CORH N III wrap is classified according to EN 13501-2 and can be installed in rigid walls, rigid floors, flexible walls and in mineral fibre sealants as well as in shaft walls according to to the listed tables.

Space-enclosing component	Thickness	Pipe diameter
Flexible walls [with steel or wooden frames]	$\geq 94 \mathrm{~mm}$	$\leq 110 \mathrm{~mm}$
Rigid walls [porous concrete, concrete, brickwork]	$\geq 100 \mathrm{~mm}$	$\leq 110 \mathrm{~mm}$
Rigid floors [porous concrete, concrete]	$\geq 150 \mathrm{~mm}$	$\leq 160 \mathrm{~mm}$
Mineral fibre sealant	$\geq 100 \mathrm{~mm}$	$\leq 160 \mathrm{~mm}$
Shaft walls	$\geq 2 \times 20 \mathrm{~mm}$	$\leq 110 \mathrm{~mm}$

Permitted tubes	Outer diameter	Pipe wall thickness
Plastic pipes (PVC pipes, PP pipes and PE pipes)	$\leq 160 \mathrm{~mm} /$ pipe	up to max. 12.3 mm
Multi-layer composite pipes	$\leq 110 \mathrm{~mm} /$ pipe	according to system manufacturer

Permitted insulation	Thickness
PE foam strips	$\leq 4 \mathrm{~mm}$
Synthetic rubber	$\leq 31.5 \mathrm{~mm}$

Wall application

Floor application
Mineral fibre sealant wall application
Mineral fibre sealant floor application
Shaft wall application
Shaft wall with double wall application

Page 4-8
Page 9-14
Page 15
Page 16
Page 17
Page 18

CORH N III

Assembly steps

The strip, which will foam in case of fire, is wrapped around the pipe with the necessary number of layers (see tables below) around the pipe and mounted flush with the outer wall surfaces or bottom side of the floor.

The strip is wrapped around the pipe, before the opening, and the individual layers of the strip are affixed to each other by pull off the self-adhesive protective film. With the non-self-adhesive variant, the end of the strip must be secured with adhesive tape.

Then, the strip is pushed into the respective component opening as deep as possible so it is flush with the component.

Remaining annular gaps/joins in the component openings must be filled with mortar or gypsum to fill any gaps.

Then, the pipe bushing must be permanently labelled with a sign. The length of the intumescent strip or the number of coils is defined according to the table below and the strip is cut to length using scissors or a knife.

For further information regarding installation see ETA-16/0056.

CORH N III

Wall installation

Pipes	PVC-U pipes according to EN 1452-1
Insulation	4 mm PE - sound insulation [e.g. - Thermacompact TF]
	Synthetic rubber AF/Armaflex AF-1 to AF-5
	[up to 31.5 mm thickness, tolerances +-2.5 mm]

Pipe \varnothing (mm)	Wall thickness [mm]	Number of layers CORHN III	Insulation thickness (mm)	Maximum achieved classification	
				$\begin{aligned} & \text { E = Integrity and } \\ & \text { I = Insulation } \end{aligned}$	$E=$ Integrity
≤ 50	1.8-5.6	2x2	without	El 120 - U/C	E 120-U/C
$>50-\leq 110$	1.8-12.3	2×3		El 120 - U/C	E 120-U/C
≤ 50	1.8-5.6	2×3	4 mm PE	El $120-$ U/C	E $120-$ U/C
$>50-\leq 110$	$1.8-\leq 2.2$	2×4		El $120-$ U/C	E 120-U/C
$>50-\leq 110$	2.2-12.3	2×3		El 120 - U/C	E 120-U/C
Insulation synthetic rubber AF Armaflex in thicknesses AF 1 - AF 5					
≤ 50	1.8-5.6	2×3	up to 9.5 mm	El $120-$ U/C	E 120-U/C
$>50-\leq 110$	5.6-12.3	2×3		El $120-$ U/C	E 120-U/C
≤ 50	1.8-5.6	2×3	up to 31.5 mm	El 120 - U/C	E 120-U/C
$>50-\leq 110$	1.8-2.7	2×3	17-18 mm	El $120-$ U/C	E 120-U/C
$>50-\leq 110$	1.8-12.3	2×4	up to 31.5 mm	El 120 - U/C	E 120-U/C

CORH N III

Pipes	PE-HD pipes according to EN 1519-1
Insulation	4 mm PE sound insulation [e.g. - Thermacompact TF]
	Synthetic rubber AF/Armaflex AF-1 to AF-5
(up to 31.5 mm thickness, tolerances +-2.5 mm]	

Pipe ø (mm)	Wall thickness (mm)	Number of layers CORHN III	Insulation	Maximum achieved classification	
				$E=$ Integrity and I = Insulation	E = Integrity
≤ 50	1.8	2×2		El 120 - U/C	E 120-U/C
$>50-\leq 110$	1.8-10	2×3		El 120 - U/C	E 120 - U/C
≤ 50	1.8	2×3	4 mmPE	El 120 - U/C	E 120-U/C
$>50-\leq 110$	1.8-10	2×3		El 120 - U/C	E 120-U/C
Insulation synthetic rubber like AF Armaflex in thickness groups AF 1 - AF 5					
≤ 50	1.8	2×3	up to 9.5 mm	El $120-$ U/C	E $120-$ U/C
> $50-\leq 110$	1.8-10	2×3		El $120-$ U/C	E 120-U/C
≤ 110	1.8-10	2×4	up to 31.5 mm	El 120 - U/C	E $120-$ U/C

Pipes	PP pipes according to EN ISO 15494
Insulation	4 mm PE sound insulation [e.g. - Thermacompact TF] Synthetic rubber AF/Armaflex AF-1 to AF-5 [up to 31.5 mm thickness, tolerances +-2.5 mm]

Pipe ø (mm)	Wall thickness (mm)	Number of layers CORHNIII	Insulation	Maximum achieved classification	
				$E=$ Integrity and I = Insulation	E = Integrity
≤ 50	1.8	2×2		El 120 - U/C	E 120-U/C
$>50-\leq 110$	1.8-10	2×3		El 120 - U/C	E 120 - U/C
≤ 50	1.8	2×2	4 mm	El 120 - U/C	E 120-U/C
$>50-\leq 110$	1.8-10	2×3	4 Tme	El 120 - U/C	E 120-U/C
Insulation synthetic rubber like AF Armaflex in thickness groups AF 1 - AF 5					
≤ 50	1.8	2×3	up to 9.5 mm	El $120-$ U/C	E 120 - U/C
$>50-\leq 75$	1.8-10	2×3		El $120-$ U/C	E 120-U/C
≤ 110	1.8-10	2×4	up to 31.5 mm	El 120 - U/C	E 120 - U/C

Tolerances Armaflex AF: AF $1-A F 2+-1.0 \mathrm{~mm}$; AF $3-\mathrm{AF} 4+-1.5 \mathrm{~mm}, \mathrm{AF} 5+-2.5 \mathrm{~mm}$

Pipes		Wavin SiTECH pipes			
Insulation		4 mm PE sound insulation [e.g. Thermacompact TF]			
				Maximum achiev	classification
Pipe ø (mm)	Wall thickness (mm)	Number of layers CORHNIII	Insulation	$\begin{aligned} & \text { E = Integrity and } \\ & \text { I = Insulation } \end{aligned}$	$\mathrm{E}=$ Integrity
≤ 50	2.0	2×2		El 120 - U/C	E 120-U/C
$>50-\leq 75$	2.0-2.55	2×3	insulation like	El 120 - U/C	E 120 - U/C
$>50-\leq 90$	2.0-3.05	2×4	Thermacompact	El 120 - U/C	E 120-U/C
$>50-\leq 110$	2.0-3.7	2x5		El 120 - U/C	E 120-U/C

Pipes	Aquatherm green pipe MS
Insulation	4 mm PE sound insulation [e.g. - Thermacompact TF]
	Synthetic rubber AF/Armaflex AF-1 to AF-5 (up to 31.5 mm thickness, tolerances +-2.5 mm]

Pipe \varnothing (mm)	Wall thickness (mm)	Number of layers CORHN III	Insulation	Maximum achieved classification	
				$\begin{aligned} & \text { E = Integrity and } \\ & \text { I = Insulation } \end{aligned}$	$\mathrm{E}=$ Integrity
≤ 40	5.6	2×2	without, with PE sound insulation or with synthic rubber AF Armaflex up to 31.5 mm	El 120 - U/C	E 120 - U/C
$>40-\leq 75$	$5.6-10.4$	2×3		El $120-$ U/C	E 120 - U/C
$>40-\leq 110$	10.4-15.2	2×4		El 120 - U/C	E 120 - U/C

Pipes	Uponor MLC pipe white
Insulation	4 mm PE sound insulation [e.g. - Thermacompact TF]
	Synthetic rubber AF/Armaflex $A F-1$ to $A F-5$
	[up to 31.5 mm thickness, tolerances +-2.5 mm]

Pipe ø (mm)	Wall thickness (mm)	Number of layers CORHNIII	Insulation	Maximum achieved classification	
				$E=$ Integrity and I = Insulation	E = Integrity
≤ 40	5.6	2×2	without, PE or synthic rubber Armaflex AF	El 120 - U/C	E 120-U/C
$>40-\leq 75$	5.6-10.4	2×3	without	El 90 - U/C	E 120-U/C
		2×4		El $120-$ U/C	E 120-U/C
		2×3	4 mm PE	El 120 - U/C	E $120-$ U/C
		2×3	up to 31.5 mm	El 120 - U/C	E 120-U/C
$>40-\leq 110$	10.4-<15.2	2x4	without	El $90-$ U/C	E 120-U/C
		2×5		El 120 - U/C	E 120-U/C
		2×4	4 mm PE	El $120-$ U/C	E $120-$ U/C
		2×4	up to 31.5 mm	El 120 - U/C	E 120-U/C
120 mm wall thickness					
> 40- ≤ 110	$10.4-\leq 15.2$	2×4	without	El 120 - U/C	E 120 - U/C

Pipes		Alpex Duo multilayer pipes			
Insulation		PE sound insulation or Armaflex AF thickness group AF 1 - AF 5			
	Wall thickness (mm)	Number of layers CORHNIII	Insulation	Maximum achieved classification	
Pipe ø (mm)				$E=$ Integrity and I = Insulation	E = Integrity
≤ 40	3.5	2×2	without, PE or with synthetic rubber like Armaflex AF	El 120 - U/C	E 120-U/C
$>40-\leq 75$	3.5-5.0	2×3	without	El 120 - U/C	E 120-U/C
		2×3	up to 9.5 mm	El $90-$ U/C	E $120-$ U/C
		2×4	12.5 to 18 mm	El 90 - U/C	E 120-U/C
		2×4	25 to 31.5 mm	El 120 - U/C	E 120-U/C
		2×5	up to 31.5 mm	El 120 - U/C	E $120-$ U/C

Floor installation

Pipes	PVC-U pipes according to EN 1452-1
Insulation	4 mm PE - sound insulation (e.g. - Thermacompact TF)
	Synthetic rubber like AF/Armaflex thickness groups AF-1 to AF-5
	[up to 31.5 mm thickness, tolerances +-2.5 mm]

Pipe ø (mm)	Wall thickness (mm)	Number of layers CORHN III	Insulation	Maximum achieved classification	
				$E=$ Integrity and I = Insulation	$E=$ Integrity
≤ 50	1.8-5.6	2	without	El 120 - U/C	E 120 - U/C
$>50-\leq 110$	1.8-12.3	3		El 120 - U/C	E 120-U/C
50	3.7	2		El 240 - U/C	E 240 - U/C
≤ 110	1.8-12.3	3	4 mm PE	El 120 - U/C	E 120-U/C
≤ 110	1.8-12.3	3	up to 9.5 mm	El $90-\mathrm{U} / \mathrm{C}$	E $90-$ U/C
≤ 110	12.3	3	up to 18 mm	El 90 - U/C	E $90-$ U/C
≤ 110	1.8-<12.3	4	up to 23 mm	El $90-$ U/C	E $90-\mathrm{U} / \mathrm{C}$
110	12.3	4	$15.5-23 \mathrm{~mm}$	El 120 - U/C	E 120 - U/C
≤ 110	$1.8-<12.3$	5	$12.5-31.5 \mathrm{~mm}$	El $90-$ U/C	E $90-$ U/C
≤ 110	12.3	5		El 120 - U/C	E 120 - U/C
≤ 160	4.7	6	without	El 240 - U/C	E 240 U/C

Pipes	PE-HD pipes according to EN 1519-1
Insulation	4 mm PE sound insulation [e.g. - Thermacompact TF] Synthetic rubber like AF/Armaflex thickness groups AF-1 to AF-5 (up to 31.5 mm thickness, tolerances +-2.5 mm)

Pipe ø (mm)	Wall thickness (mm)	Number of layers CORHN III	Insulation	Maximum achieved classification	
				$E=$ Integrity and I = Insulation	$\mathrm{E}=$ Integrity
≤ 50	1.8	2	without	El 120 - U/C	E 120 - U/C
$>50-\leq 110$	1.8-10	3		El 120 - U/C	E $120-$ U/C
≤ 50	1.8	3	4 mm PE	El 120 - U/C	E 120 - U/C
$>50-\leq 110$	1.8-10	3		El 120 - U/C	E $120-$ U/C
≤ 50	1.8	3	up to 9.5 mm	El 120 - U/C	E 120-U/C
$>50-\leq 75$	1.8-1.9	3		El 120 - U/C	E 120 - U/C
50	4.6	2	without	El 240 - U/C	E 240 - U/C
$>75-\leq 110$	1.9-10	3	up to 9.5 mm	El $90-$ U/C	E 90-U/C
110	10	3		El $90-$ U/C	E 120 - U/C
110	10	4		El $90-$ U/C	E 120 - U/C
110	10	3	9.5-18 mm	El 120 - U/C	E 120 - U/C
≤ 110	1.8-10	4	$9.5-31.5 \mathrm{~mm}$	El 120 - U/C	E 120-U/C
110	6.3	4	without	El $240-$ U/C	E 240 - U/C

Pipes	PP pipes according to EN ISO 15494
Insulation	4 mm PE - sound insulation [e.g. - Thermacompact TF] Synthetic rubber like AF/Armaflex thickness groups AF-1 to AF-5 [up to 31.5 mm thickness, tolerances +-2.5 mm]

Pipe ø (mm)	Wall thickness (mm)	Number of layers CORHN III	Insulation	Maximum achieved classification	
				$E=$ Integrity and I = Insulation	E = Integrity
≤ 50	1.8	2	without	El 120 - U/C	E $120-$ U/C
$>50-\leq 110$	1.8-10	3		El 120 - U/C	E 120-U/C
≤ 50	1.8	2	4 mm PE	El 120 - U/C	E $120-$ U/C
$>50-\leq 110$	1.8-10	3		El 120 - U/C	E 120-U/C
≤ 110	1.8-10	3	up to 9.5 mm	El 120 - U/C	E 120-U/C
≤ 110	1.8-10	4	up to 31.5 mm	El 120 - U/C	E 120-U/C

Pipes		Wavin SiTECH pipes			
Insulation		4 mm PE sound insulation [e.g. - Thermacompact TF]			
Pipe \varnothing (mm)	Wall thickness (mm)	Number of layers CORHN III	Insulation	Maximum achieved classification	
				$E=$ Integrity and I = Insulation	E = Integrity
≤ 50	2.0	2	4 mm PE sound insulation	El 120 - U/C	E 120 - U/C
$>50-\leq 75$	2.0-2.55	3		El 120 - U/C	E 120-U/C
$>50-\leq 90$	2.0-3.05	4		El 120 - U/C	E 120-U/C
$>50-\leq 110$	2.0-3.7	5		El 120 - U/C	E 120 - U/C

ASSEMBLY INSTRUCTION

Pipes	POLO-KAL NG pipes
Insulation	4 mm PE sound insulation [e.g. - Thermacompact TF)

Pipe ø (mm)	Wall thickness (mm)	Number of layers CORHN III	Insulation	Maximum achieved classification	
				$\begin{aligned} & \text { E = Integrity and } \\ & \text { I = Insulation } \end{aligned}$	E = Integrity
≤ 50	2.0	2	4 mm PE sound insulation	El $120-$ U/C	E 120-U/C
$>50-\leq 75$	2.0-2.5	3		El 120 - U/C	E 120-U/C
$>50-\leq 90$	2.0-2.9	4		El $120-$ U/C	E 120 - U/C
$>50-\leq 110$	2.0-3.4	5		El 120 - U/C	E $120-$ U/C

Pipes		Geberit Silent PP pipes			
Insulation		4 mm PE sound insulation (e.g. - Thermacompact TF)			
	Wall thickness (mm)	Number of layers CORHN III	Insulation	Maximum achieved classification	
Pipe ø (mm)				$E=$ Integrity and I = Insulation	$E=$ Integrity
≤ 50	2.0	2	4 mm PE sound insulation	El 120 - U/C	E 120-U/C
$>50-\leq 75$	2.0-2.5	3		El $120-$ U/C	E $120-$ U/C
$>50-\leq 90$	2.0-3.1	4		El 120 - U/C	E 120-U/C
$>50-\leq 110$	2.0-3.6	5		El 120 - U/C	E 120-U/C

Pipes		Rehau Raupiano pipes			
Insulation		4 mm PE sound insulation [e.g. - Thermacompact TF)			
Pipe ø (mm)	Wall thickness (mm)	Number of layers CORHN III	Insulation	Maximum achieved classification	
				$E=\text { Integrity and }$ I = Insulation	$E=$ Integrity
≤ 50	1.8	2	4 mm PE sound insulation	El 120 - U/C	E 120-U/C
$>50-\leq 75$	1.8-2.1	3		El 120 - U/C	E 120-U/C
$>50-\leq 90$	1.8-2.4	4		El 120 - U/C	E $120-$ U/C
> $50-\leq 110$	1.8-2.7	5		El 120 - U/C	E 120-U/C

Pipes	PVC pipes and multilayer pipes like Unipipe, Alpex Duo, Uponor MLC pipe white and Aquatherm green pipe MS with zero relative distance
Insulation	4 mm PE sound insulation (e.g. - Thermacompact TF) Synthetic rubber like AF/Armaflex thickness group AF-1 to AF-5 (up to a thickness of 31.5 mm, tolerances +-2.5 mm]

Pipe ø (mm)	Wall thickness (mm)	Number of layers CORHNIII	Insulation	Maximum achieved classification	
				$E=$ Integrity and I = Insulation	$\mathrm{E}=$ Integrity
≤ 110	1.8-12.3	2	without / 4 mm PE / Armaflex AF up to 9.5 mm		
≤ 110	1.8-12.3	3	Armaflex AF $9.5-31.5 \mathrm{~mm}$		

Pipes	Aquatherm green pipe MS
Insulation	4 mm PE sound insulation (e.g. - Thermacompact TF)
	Synthetic rubber like AF/Armaflex thickness group AF-1 to AF-5
	(up to a thickness of 31.5 mm, tolerances +-2.5 mm]

Pipe ø (mm)	Wall thickness (mm)	Number of layers CORHN III	Insulation	Maximum achieved classification	
				$E=$ Integrity and I = Insulation	$E=$ Integrity
≤ 40	5.6	2	Without / PE / synthetic rubber Armaflex AF	El 120 - U/C	E 120 - U/C
$>40-\leq 75$	5.6-10.4	3		El 120 - U/C	E 120-U/C
> 40- ≤ 110	10.4-15.2	4		El 120 - U/C	E 120-U/C

Pipes	Uponor MLC pipe white
Insulation	4 mm PE sound insulation (e.g. - Thermacompact TF]
	Synthetic rubber like AF/Armaflex thickness group AF-1 to AF-5
	(up to 31.5 mm thickness, tolerances +-2.5 mm)

Pipe ø (mm)	Wall thickness (mm)	Number of layers CORHN III	Insulation	Maximum achieved classification	
				$\begin{aligned} & \text { E = Integrity and } \\ & \text { I = Insulation } \end{aligned}$	$E=$ Integrity
≤ 40	5.6	2	Without / PE / Synthetic rubber Armaflex AF	El $120-$ U/C	E 120-U/C
$>40-\leq 75$	5.6-10.4	3		El $120-$ U/C	E 120 - U/C
$>40-\leq 110$	10.4-15.2	4		El 120 - U/C	E 120 - U/C

Pipes	Alpex Duo multilayer pipes
Insulation	4 mm PE sound insulation [e.g. - Thermacompact TF]
	Synthetic rubber like AF/Armaflex thickness group AF-1 to AF-5

Pipe ø (mm)	Wall thickness (mm)	Number of layers CORHN III	Insulation	Maximum achieved classification	
				$E=$ Integrity and I = Insulation	$\mathrm{E}=$ Integrity
≤ 40	3.5	2	without	El 120 - U/C	E 120 - U/C
$>40-\leq 75$	3.5-5.0	3	without	El 120 - U/C	E 120-U/C
		3	4 mm PE	El 90 - U/C	E 120 - U/C
		5		El 120 - U/C	E 120 - U/C
		3	Armaflex AF up to 9.5 mm	El 120 - U/C	E 120-U/C
		4	Armaflex AF up to 31.5 mm	El 120 - U/C	E 120-U/C

Application in $2 \times 50 \mathrm{~mm}$ mineral fibre sealant in the wall

Pipe and number of layers CORHNIII	E = Integrity and I = Insulation	$\mathrm{E}=$ Integrity
PVC ø 50×2.4 mm - 2 layers	El 120 U U	E 120 U / U
PVC ø $75 \times 3.6 \mathrm{~mm}-3$ layers	El 120 / U	E 120 U / U
PVC ø $110 \times 5.3 \mathrm{~mm}-4$ layers	El 120 / U	E 120 U / U
PP ø $50 \times 2.9 \mathrm{~mm}-2$ layers	El 120 / U	E 120 U / U
PP ø $75 \times 4.3 \mathrm{~mm}$ - 3 layers	El 120 U U	E 120 U / U
PP ø 160×9.1 mm - 6 layers	El 120 U U	E 120 U / U

Application in $2 \times 50 \mathrm{~mm}$ mineral fibre sealant in the floor

Pipe and number of layers CORHN III	$\mathrm{E}=\text { Integrity and }$ I = Insulation	$\mathrm{E}=$ Integrity
PVC ø $50 \times 2.4 \mathrm{~mm}-2$ layers	El 60 U / U	E 120 U / U
PVC ø $75 \times 3.6 \mathrm{~mm}-3$ layers	El 120 / U	E 120 U / U
PVC ø $110 \times 5.3 \mathrm{~mm}-4$ layers	El 90 U / U	E 120 U / U
PVC ø $160 \times 7.7 \mathrm{~mm}-6$ layers	El 90 U / U	E 120 U / U
PP ø $50 \times 2.9 \mathrm{~mm}-2$ layers	El 60 U U U	E 120 U / U
PP ø $75 \times 4.3 \mathrm{~mm}-3$ layers	El 120 / U	E 120 U / U
PP ø $110 \times 6.3 \mathrm{~mm}-4$ layers	El 90 U U	E 120 U / U
PPø 160×9.1 mm - 6 layers	El 120 L / U	E 120 U / U

Application in a min. 40 mm thick shaft wall

Pipe and number of layers CORHNIII	$\begin{aligned} & \text { E = Integrity and } \\ & \text { I = Insulation } \end{aligned}$	E = Integrity
PE ø $110 \times 6.3 \mathrm{~mm}-4$ layes	El 90 U / C	E 90 U / C
PP ø $110 \times 6.3 \mathrm{~mm}-4$ layers	El 90 U / C	E90 U / C
PVC ø $110 \times 5.3 \mathrm{~mm}-4$ layers	El 90 U / C	E 90 U / C
PE ø $50 \times 4.6 \mathrm{~mm}-2$ layers	El 90 U / U	E90 - U
PP ø $50 \times 4.6 \mathrm{~mm}-2$ layers	El 90 U / U	E90U / U
PVC ø 50×3.7 mm - 2 layers	El 90 U / U	E90 ${ }^{\text {/ U }}$

Application in a min. 40 mm thick shaft wall with double wall

Pipe and number of layers CORHN III	E = Integrity and I= Insulation	E = Integrity
PE ø $110 \times 6.3 \mathrm{~mm}-4$ layes	El 120 U/C	E $120 \cup /$ C
PP ø $110 \times 6.3 \mathrm{~mm}-4$ layers	El $120 \cup /$ C	E $120 \cup /$ C
PVC ø $110 \times 5.3 \mathrm{~mm}-4$ layers	El $120 \cup /$ C	E $120 \cup /$ C

