

INSTITUTO DE CIENCIAS DE LA CONSTRUCCIÓN EDUARDO TORROJA

C/ Serrano Galvache n. 4 28033 Madrid (Spain) Tel.: (34) 91 302 04 40

https://dit.ietcc.csic.es

European Technical Assessment

ETA 12/0397 of 24/10/2023

English translation prepared by IETcc. Original version in Spanish language

Nº 305/2011

General Part

Technical Assessment Body issuing the ETA designated according to Art. 29 of Regulation (EU) 305/2011:

Trade name of the construction product:

Product family to which the construction product belongs:

Manufacturer:

Manufacturing plants:

Assessment contains:

This European Technical

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on

This version replaces

the basis of:

Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc)

Anchor MTP

Torque controlled expansion anchor made of galvanized steel, sherardized steel or stainless steel of sizes M8, M10, M12, M16, M20 and M24 for use in cracked or uncracked concrete.

Index - Técnicas Expansivas S.L.

Segador 13

26006 Logroño (La Rioja) Spain. website: www.indexfix.com

Index plant 2

21 pages including 3 annexes which form an integral part of this assessment.

European Assessment Document EAD 330232-01-0601 "Mechanical fasteners for use in concrete", ed. December 2019

ETA 12/0397 version 6 issued on 06/09/2022

Page 2 of European Technical Assessment ETA 12/0397 of 24/10/2023

English translation prepared by IETcc

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to article 25 (3) of Regulation (EU) No 305/2011.

SPECIFIC PART

1. Technical description of the product

The Index MTP wedge anchor in the range of M8, M10, M12, M16, M20 and M24 is an anchor made of galvanised steel. The Index MTP-AT wedge anchor in the range of M8, M10, M12, M16, and M20 is an anchor made of zinc nickel steel. The Index MTP-G wedge anchor in the range of M8, M10, M12, M16 and M20 is an anchor made of sherardized steel. The Index MTP-X wedge anchor in the range of M8, M10, M12, M16 and M20 is an anchor made of galvanized steel. The Index MTP-A4 wedge anchor in the range of M8, M10, M12, M16 and M20 is an anchor made of stainless steel. The anchor is installed into a predrilled cylindrical hole and anchored by torque-controlled expansion. The anchorage is characterized by friction between expansion clip and concrete.

Product and installation descriptions are given in annexes A1 and A2.

2. Specification of the intended use in accordance with the applicable European Assessment Document.

The performances given in section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer but are to be regarded only as a mean to choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance	
Characteristic resistance to tension load (static and quasi-static loading), method A	See Annex C1, C3 and C4	
1 0,		
Characteristic resistance to shear load (static and	See Annex C1 and C5	
quasi-static loading).		
Displacements	See Annex C6	
Characteristic resistance and displacements for seismic	See Annex C7 to C10	
performance category C1 and C2		

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for class A1
Resistance to fire	See annexes C11 and C12

English translation prepared by IETcc

4. Assessment and Verification of Constancy of Performances (hereinafter AVCP) system applied, with reference to its legal base

The applicable European legal act for the system of Assessment and Verification of Constancy of Performances (see annex V to Regulation (EU) No 305/2011) is 96/582/EC.

The system to be applied is 1.

5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document.

The technical details necessary for the implementation of the AVCP system are laid down in the quality plan deposited at Instituto de Ciencias de la Construcción Eduardo Torroja.

Instituto de Ciencias de la Construcción Eduardo Torroja CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

C/ Serrano Galvache n.º 4. 28033 Madrid. Tel: (+34) 91 302 04 40 https://dit.ietcc.csic.es

On behalf of the Instituto de Ciencias de la Construcción Eduardo Torroja Madrid, 24th of October 2023

Director IETcc - CSIC

Product and installed condition

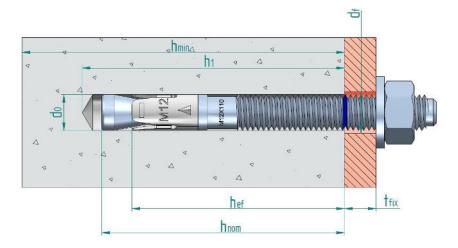
MTP, MTP-AT, MTP-G, MTP-X. MTP-A4 anchor

Identification on anchor:

• Expansion clip:

Anchor MTP:
 Anchor MTP-AT
 Anchor MTP-AT
 Company logo + "MTP-AT" + Metric.
 Anchor MTP-G:
 Anchor MTP-X:
 Anchor MTP-X:
 Anchor MTP-A4:
 Company logo + "MTP-X" + Metric
 Company logo + "MTP-A4" + Metric

• Anchor body: Metric x Length


Blue ring mark to show embedment depth

• Length letter code on head:

Letter on head	Length [mm]		
С	68 ÷75		
D	76 ÷ 88		
E	89 ÷ 101		
F	102 ÷ 113		
G	114 ÷ 126		
Н	127 ÷139		

Letter on head	Length [mm]		
l	140 ÷ 151		
J	152 ÷ 164		
K	165 ÷ 177		
L	178 ÷ 190		
M	191 ÷ 202		
N	203 ÷ 215		

Letter on head	Length [mm]
0	216 ÷ 228
Р	229 ÷ 240
Q	241 ÷ 253
R	254 ÷ 266
S	267 ÷ 300

d₀: Nominal diameter of drill bit
 d_f: Fixture clearance hole diameter
 h_{ef}: Effective anchorage depth
 h₁: Depth of drilled hole

h_{nom}: Overall anchor embedment depth in the concrete

h_{min}: Minimum thickness of concrete member

t_{fix}: Fixture thickness

MTP anchors	
Product description	Annex A1
Installed condition	

Table A1: materials

Item	Designation	Material for MTP	Material for MTP-AT
1	Anchor body M24: machined carbon steel, galvanized > sealed, ISO 4042 ZnNi8		Carbon steel wire rod, zinc nickel ≥ 8 µm, sealed, ISO 4042 ZnNi8/An/T2, with antifriction coating
2	Washer	DIN 125, DIN 9021, DIN 440 galvanized ≥ 5 µm ISO 4042 Zn5/An/T0	DIN 125, DIN 9021 or DIN 440 zinc nickel ≥ 8 µm, sealed, ISO 4042 ZnNi8 /An/T2
3	Nut	DIN 934 class 6, galvanized ≥ 5 µm ISO 4042 Zn5/An/T0	DIN 934 class 6 zinc nickel ≥ 8 μm, sealed, ISO 4042 ZnNi8/An/T2, class 6
4	Expansion clip	Stainless steel	Stainless steel

Item	Designation	Material for MTP-G	Material for MTP-X	
1	Anchor body	Carbon steel wire rod, sherardized ≥ 40 μm EN 13811 Carbon steel wire rod, galvanized ISO 4042 Zn5/An/T0 with antifri coating		
2	Washer	DIN 125, DIN 9021, DIN 440 sherardized ≥ 40 µm EN 13811	DIN 125, DIN 9021, DIN 440 galvanized ≥ 5 µm ISO 4042 Zn5/An/T0	
3	Nut	DIN 934 class 6, sherardized ≥ 40 µm EN 13811	DIN 934 class 6 galvanized ≥ 5 μm ISO 4042 Zn5/An/T0	
4	Expansion clip	Stainless steel	Carbon steel strip, sherardized ≥ 15 μm EN 13811	

Item	Designation	Material for MTP-A4		
1	Anchor body	Stainless steel, grade A4		
2	Washer	DIN 125, DIN 9021, DIN 440 stainless steel, grade A4		
3	Nut	Stainless steel, grade A4 with antifriction coating		
4	Expansion clip	Stainless steel, grade A4, galvanized ≥ 5 µm ISO 4042 Zn5/An/T0		

MTP anchors	
Product description	Annex A2
Materials	

Specifications of intended use

Version	Intended use	M8	M10	M12	M16	M20	M24
	Static or quasi static loads	✓	✓	✓	✓	✓	✓
MTP	Seismic loads category C1		✓	✓	✓		
	Seismic loads category C2			✓	✓		
	Resistance to fire exposure	✓	✓	✓	✓	✓	✓
	Static or quasi static loads	✓	✓	✓	✓	✓	
MTP-AT	Seismic loads category C1		✓	✓	✓		
WIT-AI	Seismic loads category C2			✓	✓		
	Resistance to fire exposure	✓	✓	✓	✓	✓	
	Static or quasi static loads	✓	✓	✓	✓	✓	
MTP-G	Seismic loads category C1	✓	✓	✓	✓	✓	
WIF-G	Seismic loads category C2			✓	✓	✓	
	Resistance to fire exposure	✓	✓	✓	✓	✓	
	Static or quasi static loads	✓	✓	✓	✓	✓	
MTDV	Seismic loads category C1	✓	✓	✓	✓	✓	
MTP-X	Seismic loads category C2		✓	✓		✓	
	Resistance to fire exposure	✓	✓	✓	✓	✓	
MTP-A4	Static or quasi static loads	✓	✓	✓	✓	✓	
	Seismic loads category C1		✓	✓	✓	✓	
	Seismic loads category C2		✓	✓	✓	✓	
	Resistance to fire exposure	✓	✓	✓	✓	✓	

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A2:2021
- Strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021
- Cracked or uncracked concrete

Use conditions (environmental conditions):

- Temperature range of the anchorage base material during the working life: -40 °C to +80 °C.
- MTP, MTP-AT, MTP-X: anchorages subjected to dry internal conditions.
- MTP-G:
 - Anchorages in cracked concrete: dry internal conditions
 - Anchorages in uncracked concrete: durability depending on the following environmental corrosivity categories according to ISO 9223:2012:

Corrosivity category	Corrosivity	Durability [years]
C1	Very low	50 ¹⁾
C2	Low	50 ¹⁾
C3	Medium	19
C4	High	9.5
C5	Very high	4.7
CX	Extreme	

1) Working life of fastener limited to 50 years according to EAD 330232-01-0601 section 1.2.2

MTP anchors	
Intended use	Annex B1
Specifications	

 MTP-A4: anchorages subjected to dry internal conditions, to external atmospheric exposure (including industrial and marine environment) or to permanent internal damp conditions if no particular aggressive conditions exist. Such particular aggressive conditions are e.g., permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g., in desulphurization plants or road tunnels where de-icing materials are used). Atmospheres under Corrosion Resistance Class CRC III according to EN 1993-1-4:2006+A1:2015 annex A.

Corrosivity	Corrosivity	Typical environments – Examples					
category		Indoor	Outdoor				
C1	Very low	Heated spaces with low relative humidity and insignificant pollution; e.g., offices, schools, museums.	Dry or cold zone, atmospheric environment with very low pollution and time of wetness; e.g., certain desserts, Central Artic/Antarctic.				
C2	Low	Unheated spaces with varying temperature and relative humidity. Low frequency of condensation and low pollution; e.g., storage, sport halls.	Temperate zone, atmospheric environment with low pollution (SO $_2$ < 5 μ g/m 3); e.g., rural areas, small towns. Dry or cold zone, atmospheric environment with short time or wetness, e.g., deserts, subarctic areas.				
C3	Medium	Spaces with moderate frequency of condensation and moderate pollution from production process; e.g., food-processing plants, laundries, breweries, dairies.	Temperate zone, atmospheric environment with medium pollution (SO $_2$ 5 $\mu g/m^3$ to 30 $\mu g/m^3$), or some effect of chlorides, e.g., urban areas, coastal areas with low deposition of chlorides. Subtropical and tropical zone, atmosphere with low pollution.				
C4	High	Spaces with high frequency of condensation and high pollution from production process; e.g., industrial processing plants.	Temperate zone, atmospheric environment with high pollution(SO_2 30 μ g/m³ to 90 μ g/m³), or substantial effect of chlorides; e.g., polluted urban areas, industrial areas, coastal areas without spray of salt water or exposure to strong effect of de-icing salts. Subtropical and tropical zone, atmosphere with medium pollution.				
C5	Very High	Spaces with very high frequency of condensation and/or high pollution from production process; e.g., mines, caverns for industrial purposes, unventilated sheds in subtropical and tropical zones	Temperate zone, atmospheric environment with very high pollution (SO_2 90 $\mu g/m^3$ to 250 $\mu g/m^3$), or significant effect of chlorides; e.g., industrial areas, coastal areas, sheltered positions on coastline. Subtropical and tropical zone, atmosphere with medium pollution.				
CX	Extreme	Spaces with almost permanent condensation or extensive periods of exposure to extreme humidity effects and/or high pollution from production process; e.g., unventilated sheds inhumid tropical zones with penetration of outdoor pollution including airborne chlorides and corrosion-stimulating particulate matter	Subtropical and tropical zone (very high time of wetness), atmospheric environment with very high SO_2 pollution (higher than 250 $\mu g/m^3$) including accompanying and production factors and/or strong effect of chlorides; e.g., extreme industrial areas, coastal and offshore areas, occasional contact with salt spray.				

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete.
- Verifiable calculation rules and drawings are prepared taking into account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed for design method A in accordance with EN 1992-4:2018
- Anchorages under seismic actions are designed in accordance with EN 1992-4:2018.
 Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure. Fastening in stand-off installation or with grout layer are not allowed.
- Anchorages under fire exposure are designed in accordance with EN 1992-4:2018. It must be ensured that local spalling of the concrete cover does not occur.

MTP anchors	
Intended use	Annex B2
Specifications	

English translation prepared by IETcc

			•		
Inst	ווכ	21	\mathbf{n}	n	=

Installation:

- Hole drilling by rotary plus hammer mode

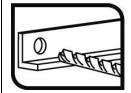
 Hole drilling by rotary plus hammer mode. Anchor installation carried out by appropriately qualified personal and the person responsible for technical matters of the site. In case of aborted hole: new drilling at a minimum distance away of twice the smaller distance if the aborted hole is filled with high strength mortar and if tension load it is not the direction of the load application. 	depth of aborted hole or
MTP anchors Intended use	Annex B3
Specifications	

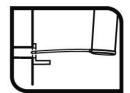
Table C1: Installation parameters for MTP, MTP-AT, MTP-G, MTP-X anchors

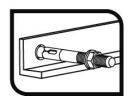
Instal	Installation parameters			Performances						
instai	iation parameters		М8	M10	M12	M16	M20	M24		
d ₀	Nominal diameter of drill bit:	[mm]	8	10	12	16	20	24		
df	Fixture clearance hole diameter:	[mm]	9	12	14	18	22	26		
T _{inst}	Nominal installation torque:	[Nm]	20 / 15 ¹⁾	40	60	100	200	250		
L _{min}	Minimum total length of the bolt:	[mm]	68	82	98	119	140	175		
h ₁	Depth of drilled hole:	[mm]	60	75	85	105	125	155		
h _{nom}	Overall anchor embedment depth in the concrete:	[mm]	55	68	80	97	114	143		
h _{ef}	Effective anchorage depth:	[mm]	48	60	70	85	100	125		
t _{fix}	Thickness of fixture for washer DIN $125 \le 2$	[mm]	L - 66	L – 80	L – 96	L - 117	L - 138	L - 170		
t _{fix}	Thickness of fixture for washers DIN 9021, DIN 440 ≤ 2)	[mm]	L - 67	L – 81	L – 97	L - 118	L - 139	L - 171		
c .	Minimum allowable spacing:	[mm]	40	40	60	65	95	125		
Smin	for edge distance c ≥	[mm]	55	70	75	95	105	125		
<u> </u>	Minimum allowable distance:	[mm]	45	45	55	70	95	125		
C _{min}	for spacing s ≥	[mm]	55	90	110	115	105	125		
h _{min}	Minimum thickness of concrete member: MTP, MTP-AT, MTP-G	[mm]	100	120	140	170	200	250		
h _{min}	Minimum thickness of concrete member: MTP-X	[mm]	80	90	105	130	150			

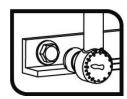
¹⁾ Respective values for anchors MTP, MTP-AT / MTP-G, MTP-X

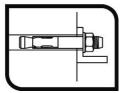
Table C2: Installation parameters for MTP-A4 anchor


Imat-!	Installation parameters			Performances					
mistaliation parameters			M8	M10	M12	M16	M20		
d ₀	Nominal diameter of drill bit:	[mm]	8	10	12	16	20		
df	Fixture clearance hole diameter:	[mm]	9	12	14	18	22		
Tinst	Nominal installation torque:	[Nm]	15	30	60	100	200		
L _{min}	Minimum total length of the bolt:	[mm]	68	82	98	119	140		
h ₁	Depth of drilled hole:	[mm]	60	75	85	105	125		
h _{nom}	Overall anchor embedment depth in the concrete:	[mm]	55	68	80	97	114		
h _{ef}	Effective anchorage depth:	[mm]	48	60	70	85	100		
t _{fix}	Thickness of fixture for washer DIN 125 ≤ 1)	[mm]	L - 66	L – 80	L – 96	L - 117	L – 138		
t _{fix}	Thickness of fixture for washers DIN 9021, DIN 440 ≤ 1)	[mm]	L - 67	L – 81	L – 97	L - 118	L – 139		
Smin	Minimum allowable spacing:	[mm]	42	47	57	75	100		
Cmin	Minimum allowable distance:	[mm]	47	52	62	75	90		
h _{min}	Minimum thickness of concrete member:	[mm]	100	120	140	170	200		


¹⁾ L = total anchor length


MIP anchors	
Performances	Annex C1
Installation parameters	


²⁾ L = total anchor length,


Installation process

MTP anchors	
Performances	Annex C2
Installation procedure	

<u>Table C3: Essential characteristics under static or quasi-static tension loads</u> <u>according to design method A according to EN 1992-4 for MTP, MTP-AT, MTP-G, MTP-X</u> <u>anchors</u>

	al characteristics un			Performances						
static to	ension loads accordi A	ng to design		M8	M10	M12	M16	M20	M24	
Tension	n loads: steel failure									
N _{Rk,s}	Characteristic resistance	e:	[kN]	18.1	31.4	40.4	72.7	116.6	179.2	
γMs	Partial safety factor: 1)		[-]	1.5	1.5	1.5	1.5	1.5	1.5	
	n loads: pull-out failu	re in concre	te		1	•	·			
	P-AT anchor									
N _{Rk,p,ucr}	Characteristic resistan	ce in C20/25	[kN]	9	18	20	36	48	55	
N _{Rk,p,cr}	Characteristic resistand cracked concrete:	ce in C20/25	[kN]	5	9.5	12	25	32	35	
MTP-G a	inchor				1		l .			
$N_{Rk,p,ucr}$	Characteristic resistan uncracked concrete:	ce in C20/25	[kN]	10	18	1)	36	1)		
$N_{Rk,p,cr}$	Characteristic resistand cracked concrete:	ce in C20/25	[kN]	6	10	16	1)	30		
MTP-X a	nchor				1		l .			
N _{Rk,p,ucr}	Characteristic resistanuncracked concrete:	ce in C20/25	[kN]	10	18	28	34	1)		
$N_{Rk,p,cr}$	Characteristic resistand cracked concrete:	ce in C20/25	[kN]	7	11	15	1)	1)		
γins	Installation safety factor	or:	[-]	1.2	1.0	1.0	1.0	1.0	1.2	
•		C30/37	[-]	1.22	1.17	1.22	1.22	1.17	1.22	
ψ_c	Increasing factor for	C40/50	[-]	1.41	1.31	1.41	1.41	1.31	1.41	
•	$N^0_{Rk,p}$:	C50/60	[-]	1.58	1.43	1.58	1.58	1.43	1.58	
Tension	n loads: concrete cor	ne and splitti	ng failur	е		•				
h _{ef}	Effective embedment de		[mm]	48	60	70	85	100	125	
k _{ucr,N}	Factor for uncracked co	•	[-]	11.0						
k _{cr.N}	Factor for cracked cond	rete:	[-]	7.7						
γins	Installation safety factor	•	[-]	1.2	1.0	1.0	1.0	1.0	1.2	
Scr,N	•		[mm]			3 x	h _{ef}			
Ccr,N	— Concrete cone failure: [mm]					1.5	x h _{ef}			
Scr,sp	Colitting failures		[mm]	288	300	350	425 / 510 ²⁾	500 / 600 ²⁾	560	
C _{cr,sp}	Splitting failure:		[mm]	144	150	175	213 / 255 ²⁾	250 / 300 ²⁾	280	

Pull out failure is not decisive

MTP anchors	
Performances	Annex C3
Essential characteristics under static or quasi-static tension loads	

¹⁾ 2) Respective values for anchors MTP, MTP-AT / MTP-G, MTP-X

<u>Table C4: Essential characteristics under static or quasi-static tension loads according to design method A according to EN 1992-4 for MTP-A4 anchor</u>

Essenti	Essential characteristics under static or quasi-				Performances					
static te	ension loads according	to design m	ethod A	M8	M10	M12	M16	M20		
Tension	loads: steel failure									
$N_{Rk,s}$	Characteristic resistance		[kN]	18.5	30.9	45.5	71.5	122.5		
γMs	Partial safety factor:		[-]	1.4	1.4	1.4	1.4	1.4		
Tension	loads: pull-out failure	in concrete								
$N_{Rk,p,ucr}$	Characteristic resistance uncracked concrete:	e in C20/25	[kN]	12	16	22	1)	1)		
		C30/37	[-]	1.22	1.22	1.22	1.22	1.09		
ψ_c	Increasing factor for No _{Rk,p} :	C40/50	[-]	1.41	1.41	1.41	1.41	1.16		
	ій нк,р.	C50/60	[-]	1.58	1.58	1.58	1.58	1.22		
$N_{Rk,p,cr}$	Characteristic resistance cracked concrete:	e in C20/25	[kN]	8.5	14	19	1)	1)		
	la anna alla a fa atau fa a	C30/37	[-]	1.01	1.00	1.09	1.09	1.17		
ψ_c	Increasing factor for	C40/50	[-]	1.02	1.00	1.15	1.16	1.32		
	$N^0_{Rk,p}$:	C50/60	[-]	1.02	1.00	1.20	1.22	1.44		
γins	Installation safety factor		[-]	1.0	1.0	1.2	1.2	1.2		
Tension	loads: concrete cone	and splitting	failure							
h _{ef}	Effective embedment dep	oth:	[mm]	48	60	70	85	100		
k _{ucr,N}	Factor for uncracked con	crete:	[-]	11.0						
k _{cr.N}	Factor for cracked concre	ete:	[-]	7,7						
γins	Installation safety factor:		[-]	1.0	1.0	1.2	1.2	1.2		
S _{cr,N}	- Concrete cone failure:		[mm]			3 x h _{ef}				
C _{cr,N}			[mm]			1.5 x h _{ef}				
S _{cr,sp}	Calitting failures		[mm]	164	204	238	290	380		
Ccr,sp	Splitting failure:		[mm]	82	102	119	145	190		

¹⁾ Pull out failure is not decisive

MTP anchors	
Performances	Annex C4
Essential characteristics under static or quasi-static tension loads	

<u>Table C5: Essential characteristics under static or quasi-static shear loads of design method A according to EN 1992-4 for MTP, MTP-AT, MTP-G, MTP-X anchors</u>

Essential characteristics under static or quasi-static shear loads according to design method A		Performances							
		M8	M10	M12	M16	M20	M24		
Shear	loads: steel failure without	lever arm							
V _{Rk,s}	Characteristic resistance:	[kN]	11.0	17.4	25.3	47.1	73.1	84.7	
k ₇	Ductility factor:	[-]			1.0	00			
γMs	Partial safety factor:	[-]	1.25	1.25	1.25	1.25	1.25	1.25	
Shear	loads: steel failure with leve	er arm							
M ⁰ Rk,s	Characteristic bending moment:	[Nm]	22.5	44.8	78.6	199.8	389.4	673.5	
γMs	Partial safety factor:	[-]	1.25	1.25	1.25	1.25	1.25	1.25	
Shear	loads: concrete pryout failu	re							
k ₈	Pryout factor:	[-]	1	2	2	2	2	2	
γins	Installation safety factor:	[-]			1.0	00	•	•	
Shear	loads: concrete edge failure)	•						
lf	Effective length of anchor under shear loads:	[mm]	48	60	70	85	100	125	
d _{nom}	Outside anchor diameter:	[mm]	8	10	12	16	20	24	
γins	Installation safety factor:	[-]			1.0	00			

<u>Table C6 Essential characteristics under static or quasi-static shear loads of design method A according to EN 1992-4 for MTP-A4 anchor</u>

	tial characteristics under static o			Р	erformanc	es	
static shear loads according to design method A			M8	M10	M12	M16	M20
Shear	loads: steel failure without lever	arm					
$V_{Rk,s}$	Characteristic resistance:	[kN]	11.9	18.9	27.4	55.0	85.9
k ₇	Ductility factor:	[-]			1.00		
γMs	Partial safety factor:	[-]	1.25	1.25	1.25	1.25	1.25
Shear	loads: steel failure with lever arn	n			•		
M ⁰ Rk,s	Characteristic bending moment:	[Nm]	26.2	52.3	91.7	233.1	454.3
γMs	Partial safety factor:	[-]	1.25	1.25	1.25	1.25	1.25
Shear	loads: concrete pryout failure				•		
k ₈	Pryout factor:	[-]	1	2	2	2	2
γins	Installation safety factor:	[-]			1.00		
Shear	loads: concrete edge failure						
l f	Effective length of anchor under shear loads:	[mm]	48	60	70	85	100
d _{nom}	Outside anchor diameter:	[mm]	8	10	12	16	20
γins	Installation safety factor:	[-]		•	1.00		•

MTP anchors	
Performances	Annex C5
Essential characteristics under static or quasi-static shear loads	

<u>Table C7: Displacements under tension loads for MTP, MTP-AT, MTP-G, MTP-X, MTP-A4 anchors</u>

					Perforr	nances		
Displacements under tension loads		M8	M10	M12	M16	M20	M24	
MTP,	MTP-AT anchor							
N	Service tension load:	[kN]	2.5	4.3	6.3	10.4	13.9	18.0
δνο	Short term displacement:	[mm]	1.1	0.7	1.0	0.4	1.6	0.4
δ _{N∞}	Long term displacement:	[mm]	1.9	1.9	1.9	1.9	1.9	2.0
MTP-0	G anchor							
N	Service tension load:	[kN]	2.5	4.3	6.3	10.4	13.9	
δ_{N0}	Short term displacement:	[mm]	1.0	1.1	0.9	1.5	1.2	
δ_{N^∞}	Long term displacement:	[mm]	1.9	1.9	1.9	1.9	1.9	
MTP-	X anchor							
N	Service tension load:	[kN]	2.5	4.3	7.6	11.9	14.3	
δ_{N0}	Short term displacement:	[mm]	1.0	1.1	0.9	1.5	1.3	
δ_{N^∞}	Long term displacement:	[mm]	1.6	1.6	1.6	1.6	1.6	
MTP-	A4 anchor							
N	Service tension load in non cracked concrete:	[kN]	5.7	7.6	8.7	15.3	19.5	
δ_{N0}	Short term displacement:	[mm]	1.4	1.4	1.4	1.8	1.8	
δ_{N^∞}	Long term displacement:	[mm]	1.9	1.9	1.9	1.9	1.9	
MTP-	A4 anchor							
N	Service tension load in cracked cocnrete:	[kN]	4.0	6.7	7.5	10.7	13.7	
δνο	Short term displacement:	[mm]	1.2	1.3	1.3	1.3	1.3	
δ _{N∞}	Long term displacement:	[mm]	1.7	1.7	1.7	1.7	1.7	

Table C8: Displacements under shear load for MTP, MTP-AT, MTP-G, MTP-X, MTP-A4 anchors

Diami					Perforr	nances		
Dispi	acements under shear loads		M8	M10	M12	M16	M20	M24
MTP,	MTP-AT anchor							
V	Service shear load:	[kN]	4.9	6.8	8.5	15.1	24.6	33.6
δ_{V0}	Short term displacement:	[mm]	1.0	1.5	1.8	1.9	3.1	1.4
δ∨∞	Long term displacement:	[mm]	1.5	2.3	2.7	2.9	4.7	2.1
MTP-0	G anchor							
V	Service shear load:	[kN]	4.9	6.8	8.5	15.1	24.6	-
δ_{V0}	Short term displacement:	[mm]	1.0	1.5	1.8	1.9	3.1	
δ∨∞	Long term displacement:	[mm]	1.5	2.3	2.7	2.9	4.7	
MTP-	X anchor							
V	Service shear load:	[kN]	4.9	6.8	8.5	15.1	24.6	
δ_{V0}	Short term displacement:	[mm]	1.0	1.5	1.8	1.9	3.1	
δ∨∞	Long term displacement:	[mm]	1.5	2.3	2.7	2.9	4.7	
MTP-	A4 anchor							
٧	Service shear load:	[kN]	6.8	10.8	15.7	31.4	46.9	
δ_{V0}	Short term displacement:	[mm]	1.9	1.6	1.6	2.2	2.2	
δ∨∞	Long term displacement:	[mm]	2.4	2.4	2.4	3.3	3.3	

MTP anchors	
Performances	Annex C6
Displacements under static or quasi-static tension and shear loads	

<u>Table C9: Essential characteristics for seismic performance category C1 MTP, MTP-AT, MTP-G, MTP-X anchors</u>

	Characteristic tension steel failure: Partial safety factor: failure	[kN]	18.1 1.5	M10 31.4	M12	M16	M20	M24
N _{Rk,s,C1} γ _{Ms,N} Steel shear MTP, MTP-A	Characteristic tension steel failure: Partial safety factor: failure T anchor			31.4	40.4			
γ _{Ms,N} Steel shear MTP, MTP-A	failure: Partial safety factor: failure T anchor			31.4	40.4			
Steel shear MTP, MTP-A	failure T anchor	[-]	1.5		40.4	72.7	116.6	
MTP, MTP-A	T anchor			1.5	1.5	1.5	1.5	-
Volument	Characteristic shear steel							
v Hk,s,C1	failure:	[kN]		12.2	17.8	33.0		
MTP-G ancho	or			•	•		•	
$V_{\text{Rk,s,C1}}$	Characteristic shear steel failure:	[kN]	6.6	12.5	18.9	35.4	54.8	
MTP-X ancho	or	,		•				
$V_{\text{Rk},s,C1}$	Characteristic shear steel failure:	[kN]	7.7	12.2	17.8	33.0	58.5	
α _{gap}	Factor for annular gap:	[-]		I.	0.5		l .	
γMs,V	Partial safety factor:	[-]	1.25	1.25	1.25	1.25	1.25	
Pull out fail	ure							
MTP, MTP-A	T anchor	1		T	T	•	T	
$N_{Rk,p,C1}$	Characteristic pull out failure:	[kN]		5.3	8.4	17.5		
MTP-G ancho	or	,		•				
$N_{Rk,p,C1}$	Characteristic pull out failure:	[kN]	6.0	9.0	16.0	25.0	30.0	
MTP-X ancho	or			I	I		I	
N _{Rk,p,C1}	Characteristic pull out failure:	[kN]	5.9	8.9	16.0	25.0	30.0	
γins	Installation safety factor:	[-]	1.2	1.0	1.0	1.0	1.0	
Concrete co		<u> </u>		I.	l.		l.	
h _{ef}	Effective embedment depth:	[mm]	48	60	70	85	100	
S _{cr,N}	Spacing:	[mm]			3 x h _{ef}		<u> </u>	
C _{cr,N}	Edge distance:	[mm]			1.5 x h _{ef}			
γins	Installation safety factor:	[-]	1.2	1.0	1.0	1.0	1.0	
	ryout failure				•		•	
k ₈	Pryout factor:	[-]	1	2	2	2	2	
Concrete ed	dge failure							
lf	Effective length of anchor:	[mm]	48	60	70	85	100	
d _{nom}	Outside anchor diameter:	[-]	8	10	12	16	20	

MTP anchors	
Performances	Annex C7
Essential characteristics for seismic performance category C1	

Table C10: Essential characteristics for seismic performance category C1 MTP-A4 anchors

Essentia	I characteristics for seismic			P	erformance	es	
performance category C1			M8	M10	M12	M16	M20
Steel ten	sion failure			1		•	
N _{Rk,s,C1}	Characteristic tension steel failure:	[kN]		30.9	45.5	71.5	122.5
γMs,N	Partial safety factor:	[-]		1.4	1.4	1.4	1.4
Steel she	ear failure						
$V_{\text{Rk,s,C1}}$	Characteristic shear steel failure:	[kN]		10.6	19.2	40.2	45.5
α _{gap}	Factor for annular gap:	[-]			0	.5	
γMs,V	Partial safety factor:	[-]		1.25	1.25	1.25	1.25
Pull out f	failure						
$N_{Rk,p,C1}$	Characteristic pull out failure:	[kN]		6.4	11.8	17.5	20.6
γins	Installation safety factor:	[-]		1.0	1.2	1.2	1.2
Concrete	cone failure						
h _{ef}	Effective embedment depth:	[mm]		60	70	85	100
S _{cr,N}	Spacing:	[mm]			3 >	(h _{ef}	
Ccr,N	Edge distance:	[mm]			1.5	x h _{ef}	
γins	Installation safety factor:	[-]		1.0	1.2	1.2	1.2
Concrete	pryout failure						
k ₈	Pryout factor:	[-]		2	2	2	2
Concrete	e edge failure						
l f	Effective length of anchor:	[mm]		60	70	85	100
dnom	Outside anchor diameter:	[-]		10	12	16	20

MTP anchors	
Performances	Annex C8
Essential characteristics for seismic performance category C1	

Table C11: Essential characteristics for seismic performance category C2 MTP, MTP-AT, MTP-G, MTP-X anchors

Essential	characteristics for seismic		Performances						
	nce category C2		M8	M10	M12	M16	M20	M24	
Steel tens	ion and shear failure								
N _{Rk,s,C2}	Characteristic tension steel failure:	[kN]		31.4	40.4	72.7	116.6		
γMs,N	Partial safety factor:	[-]		1.5	1.5	1.5	1.5		
$V_{\text{Rk,s,C2}}$	Characteristic shear steel failure:	[kN]		12.2	17.8	33.0	58.5		
α_{gap}	Factor for annular gap	[-]		0.5	0.5	0.5	0.5		
γMs,V	Partial safety factor:	[-]		1.25	1.25	1.25	1.25		
Pull out fa									
MTP, MTP-	AT anchor			Г	1		1		
$N_{Rk,p,C2}$	Characteristic pull out failure:	[kN]			5.2	8.9			
MTP-G anc	hor						T		
$N_{\text{Rk},p,C2}$	Characteristic pull out failure:	[kN]			5.9	16.3	17.2		
MTP-X anc	hor								
N _{Rk,p,C2}	Characteristic pull out failure:	[kN]		3.9	9.1		21.0		
γins	Installation safety factor:	[-]		1.0	1.0	1.0	1.0		
	cone failure			1			, ,		
h _{ef}	Effective embedment depth:	[mm]		60	70	85	100		
Scr,N	Spacing:	[mm]			3 :	x h _{ef}			
Ccr,N	Edge distance:	[mm]		1.5 x h _{ef}					
γins	Installation safety factor:	[-]		1.0	1.0	1.0	1.0		
•	pryout failure			·!!					
k ₈	Pryout factor:	[-]		2	2	2	2		
Concrete	edge failure			1			1		
lf	Effective length of anchor:	[mm]		60	70	85	100		
d _{nom}	Outside anchor diameter:	[-]		10	12	16	20		
Displacem							,		
MTP, MTP-									
δ _{N,C2} (DLS)	_ Displacement Damage	[mm]			2.34	3.99			
$\delta_{V~C2~(DLS)}$	Limitation State:1) 2)	[mm]			5.53	5.96		-	
δ _{N,C2} (ULS)	_ Displacement Ultimate Limit	[mm]			9.54	10.17			
δv,c2 (ULS)	State:1)	[mm]			9.08	10.66			
MTP-G and				T					
δ _{N,C2 (DLS)}	Displacement Damage	[mm]			6.79	5.21	5.72		
δv c2 (DLS)	Limitation State: ^{1) 2)}	[mm]			5.53	5.96	6.37		
δ _{N,C2} (ULS)	_ Displacement Ultimate Limit State:1)	[mm]			24.70	19.58	17,20		
δ _{V,C2 (ULS)} MTP-X ancl		[mm]			9.08	10.66	12.32		
δ _{N,C2} (DLS)	Displacement Damage	[mm]		3.15	5.57		6.82		
δ _V C2 (DLS)	Limitation State:1) 2)	[mm]		5.61	5.53		6.37		
δν C2 (DLS)	Displacement Ultimate Limit	[mm]		14.77	20.31		29.12		
δv,c2 (ULS)	State:1)	[mm]		8.68	9.08		12.32		

¹⁾ The listed displacements represent mean values
2) A small displacement may be required in the design in the case of displacements sensitive fastening of "rigid" supports. The characteristics resistance associated with such small displacements may be determined by linear interpolation or proportional reduction.

MTP anchors	
Performances	Annex C9
Essential characteristics for seismic performance category C2	

Table C12: Essential characteristics for seismic performance category C2 MTP-A4 anchors

Essential characteristics for seismic performance category C2			Performances						
			M8	M10	M12	M16	M20		
Steel tens	ion and shear failure								
N _{Rk,s,C2}	Characteristic tension steel failure:	[kN]		30.9	45.5	71.5	122.5		
γMs,N	Partial safety factor:	[-]		1.4	1.4	1.4	1.4		
$V_{\text{Rk},s,\text{C2}}$	Characteristic shear steel failure:	[kN]		10.6	19.2	40.2	45.5		
α _{gap}	Factor for annular gap	[-]		0.5	0.5	0.5	0.5		
γMs,V	Partial safety factor:	[-]		1.25	1.25	1.25	1.25		
Pull out failure									
$N_{Rk,p,C2}$	Characteristic pull out failure:	[kN]		3.0	4.0	15.8	15.7		
γins	Installation safety factor:	[-]		1.0	1.2	1.2	1.2		
Concrete	cone failure								
h _{ef}	Effective embedment depth:	[mm]		60	70	85	100		
Scr,N	Spacing:	[mm]		3 x h _{ef}					
Ccr,N	Edge distance:	[mm]		1.5 x h _{ef}					
γins	Installation safety factor:	[-]		1.0	1.2	1.2	1.2		
Concrete	pryout failure								
k ₈	Pryout factor:	[-]		2	2	2	2		
Concrete	edge failure	•							
ℓf	Effective length of anchor:	[mm]		60	70	85	100		
d _{nom}	Outside anchor diameter:	[-]		10	12	16	20		
Displacen	nents								
δ _{N,C2} (DLS)	Displacement Damage	[mm]		2.6	4.9	5.2	5.5		
$\delta_{\text{V C2 (DLS)}}$	Limitation State: ^{1) 2)}	[mm]		4.5	4.5	5.2	5.6		
$\delta_{\text{N,C2 (ULS)}}$	_ Displacement Ultimate Limit	[mm]		9.3	15.2	13.2	15.7		
δv,c2 (ULS)	State:1)	[mm]		6.9	7.2	8.3	7.9		

MTP anchors	
Performances	Annex C10
Essential characteristics for seismic performance category C2	

¹⁾ The listed displacements represent mean values
2) A small displacement may be required in the design in the case of displacements sensitive fastening of "rigid" supports. The characteristics resistance associated with such small displacements may be determined by linear interpolation or proportional reduction.

Table C13: Essential characteristics under fire exposure MTP, MTP-AT, MTP-G, MTP-X anchors

Essential characteristics under fire exposure				Performances					
Essenti	ai characteristics unde	M8	M10	M12	M16	M20	M24		
Steel fa	ilure								
$N_{Rk,s,fi}$		R30	[kN]	0,4	0,9	1,7	3,1	4,9	7,1
	Characteristic tension	R60	[kN]	0,3	0,8	1,3	2,4	3,7	5,3
	resistance:	R90	[kN]	0,3	0,6	1,1	2,0	3,2	4,6
		R120	[kN]	0,2	0,5	0,8	1,6	2,5	3,5
		R30	[kN]	0,4	0,9	1,7	3,1	4,9	7,1
$V_{Rk,s,fi}$	Characteristic shear	R60	[kN]	0,3	0,8	1,3	2,4	3,7	5,3
V Rk,s,ti	resistance:	R90	[kN]	0,3	0,6	1,1	2,0	3,2	4,5
		R120	[kN]	0,2	0,5	0,8	1,6	2,5	3,5
	Characteristic bending resistance:	R30	[Nm]	0,4	1,1	2,6	6,7	13,0	22,5
M^0 _{Rk,s,fi}		R60	[Nm]	0,3	1,0	2,0	5,0	9,7	16,8
IVI°Rk,s,fi		R90	[Nm]	0,3	0,7	1,7	4,3	8,4	14,6
		R120	[Nm]	0,2	0,6	1,3	3,3	6,5	11,2
Pull out	failure								
$N_{Rk,p,fi}$	Characteristic resistance:	R30 R60 R90	[kN]	1,3/1,5 ³⁾	2,3	3,0/4,0 ³⁾	6,3	7,5	7,5
		R120	[kN]	1,0/1,23)	1,8	2,4/3,23)	5,0	6,0	6,0
Concre	te cone failure 2)				<u> </u>			· ·	
N _{Rk,c,fi}	Characteristic resistance	R30 R60 R90	[kN]	2.9	5,0	7,4	12,0	18,0	31,4
		R120	[kN]	2,3	4,0	5,9	9,6	14,4	25,2
Scr.N,fi	Critical spacing:	R30 to R120	[mm]	4 x h _{ef}					
S _{min,fi}	Minimum spacing:	R30 to R120	[mm]	50	60	70	85/128 ¹⁾	100/150 ¹⁾	125
Ccr.N,fi	Critical edge distance:	R30 to R120	[mm]	2 x h _{ef}					
Cmin,fi	Minimum edge distance:	R30 to R120	[mm]	c_{min} = 2 x h_{ef} ; if fire attack comes from more than one side, the edge distance of the anchor has to be \geq 300 mm and \geq 2 x h_{ef}					
Concre	te pry out failure								
k ₈	Pryout factor:	R30 to R120	[-]	1	2	2	2	2	2

MTP anchors	
Performances	Annex C11
Essential characteristics under fire exposure	1

 ¹⁾ Respective values for anchors MTP, MTP-AT / MTP-G, MTP-X
 ²⁾ As a rule, splitting failure can be neglected since cracked concrete and reinforcement is assumed. In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{m,fi}$ = 1,0 is recommended

Table C14: Essential characteristics under fire exposure MTP-A4 anchor

	al abayaatayiatiaa uyaday fi	Performances						
Essential characteristics under fire exposure					M10	M12	M16	M20
Steel fai	lure							
		R30	[kN]	0,7	1,5	2,5	4,7	7,4
NI	Characteristic tension	R60	[kN]	0,6	1,2	2,1	3,9	6,1
N _{Rk,s,fi}	resistance:	R90	[kN]	0,4	0,9	1,7	3,1	4,9
		R120	[kN]	0,4	0,8	1,3	2,5	3,9
		R30	[kN]	0,7	1,5	2,5	4,7	7,4
M		R60	[kN]	0,6	1,2	2,1	3,9	6,1
$V_{Rk,s,fi}$	Characteristic shear resistan	R90	[kN]	0,4	0,9	1,7	3,1	4,9
		R120	[kN]	0,4	0,8	1,3	2,5	3,9
	Characteristic bending resistance:	R30	[Nm]	0,7	1,9	3,9	10,0	19,5
N 40		R60	[Nm]	0,6	1,5	3,3	8,3	16,2
M ⁰ Rk,s,fi		R90	[Nm]	0,4	1,2	2,6	6,7	13,0
		R120	[Nm]	0,4	1,0	2,1	5,3	10,4
Pull out	failure					•	•	
	Characteristic resistance:	R30						
$N_{Rk,p,fi}$		R60	[kN]	2,1	3,5	4,8	1)	1)
∙чкк,р,п		R90						
		R120	[kN]	1,7	2,8	3,8	1)	1)
Concret	e cone failure 2)				1	T	T	
	Characteristic resistance:	R30						
$N_{Rk,c,fi}$		R60	[kN]	2.7	4,8	7,1	11,5	17,2
,*,		R90	FIANT.	0.0	40.0	E C	0.0	10.0
	0 111 1 1	R120	[kN]	2,2	43,8	5,6	9,2	13,8
Scr.N,fi	omisa spasing.	R30 to R120	[mm]	4 x h _{ef}		100		
Smin,fi	minimum opaomig.	R30 to R120	[mm]	42	47	57	75	100
Ccr.N,fi	Critical edge distance:	R30 to R120	[mm]	2 x hef				
Cmin,fi	Minimum edge distance:	R30 to R120	[mm]	$c_{min} = 2 \times h_{ef}$; if fire attack comes from more than one side, the edge distance of the anchor has to be $\geq 300 \text{ mm}$ and $\geq 2 \times h_{ef}$				
Concret	e pry out failure							
k ₈	Pryout factor:	30 to R120	[-]	1	2	2	2	2

¹⁾ Pull out failure is not decisive

MTP anchors	
Performances	Annex C12
Essential characteristics under fire exposure	

²⁾ As a rule, splitting failure can be neglected since cracked concrete and reinforcement is assumed. In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{m,ii} = 1,0$ is recommended