

eota@tzus.cz

190 00 Prague **Czech Republic** 





## **European Technical** Assessment

## ETA 14/0138 of 20/05/2018

| <b>Technical Assessment Body issuing the ETA:</b> Technical and Test Institute for Construction Prague       |                                                                                                    |  |  |  |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|
| Trade name of the construction product                                                                       | MO-H,<br>MO-HW,<br>MO-HS<br>steel bonded anchor                                                    |  |  |  |
| Product family to which the construction product belongs                                                     | Product area code: 33<br>Bonded injection type anchor for use in<br>cracked and uncracked concrete |  |  |  |
| Manufacturer                                                                                                 | Index Técnicas Expansivas, S.L.<br>P.I. La Portalada II C. Segador 13<br>26006 Logroño<br>Spain    |  |  |  |
| Manufacturing plant                                                                                          | Index Plant 1                                                                                      |  |  |  |
| This European Technical Assessment contains                                                                  | 19 pages including 15 Annexes which form an integral part of this assessment.                      |  |  |  |
| This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of | EAD 330499-00-0601                                                                                 |  |  |  |
| This version replaces                                                                                        | ETA 14/0138 issued on 17/03/2016                                                                   |  |  |  |

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

#### 1. Technical description of the product

The MO-H, MO-HW (faster curing time) and MO-HS (extended processing time) with steel elements is bonded anchor (injection type).

Steel elements can be galvanized or stainless steel threaded rod or rebar.

Steel element is placed into a drilled hole filled with injection mortar. The steel element is anchored via the bond between metal part, injection mortar and concrete. The anchor is intended to be used with embedment depth from 8 diameters to 20 diameters.

The illustration and the description of the product are given in Annex A.

#### 2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

## 3. Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                             | Performance      |  |  |  |  |
|------------------------------------------------------|------------------|--|--|--|--|
| Static and quasi-static loading                      |                  |  |  |  |  |
| Resistance to steel failure (tension)                | See Annex C1, C2 |  |  |  |  |
| Resistance to combined pull-out and concrete failure | See Annex C1, C2 |  |  |  |  |
| Resistance to concrete cone failure                  | See Annex C1, C2 |  |  |  |  |
| Edge distance to prevent splitting under load        | See Annex C1, C2 |  |  |  |  |
| Robustness                                           | See Annex C1, C2 |  |  |  |  |
| Maximum setting torque moment                        | See Annex B4     |  |  |  |  |
| Minimum edge distance and spacing                    | See Annex B4     |  |  |  |  |
| Resistance to steel failure (shear)                  | See Annex C3, C4 |  |  |  |  |
| Resistance to pry-out failure                        | See Annex C3, C4 |  |  |  |  |
| Resistance to concrete edge failure                  | See Annex C3, C4 |  |  |  |  |
| Displacements under short term and long term loading | See Annex C5, C6 |  |  |  |  |
| Durability of metal parts                            | See Annex A3     |  |  |  |  |
| Seismic performance C1                               |                  |  |  |  |  |
| Resistance to steel failure                          | See Annex C7     |  |  |  |  |
| Resistance to pull-out                               | See Annex C7     |  |  |  |  |
| Factor for annular gap                               | See Annex C7     |  |  |  |  |

#### 3.2 Hygiene, health and environment (BWR 3)

No performance determined.

#### 3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

# 4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission<sup>1</sup> the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

| Product | Intended use                                                                                                                         | Level or class | System |
|---------|--------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|
|         | For fixing and/or supporting to concrete,<br>structural elements (which contributes to<br>the stability of the works) or heavy units | -              | 1      |

# 5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

#### 5.1 Tasks of the manufacturer

The manufacturer may only use raw materials stated in the technical documentation of this European Technical Assessment.

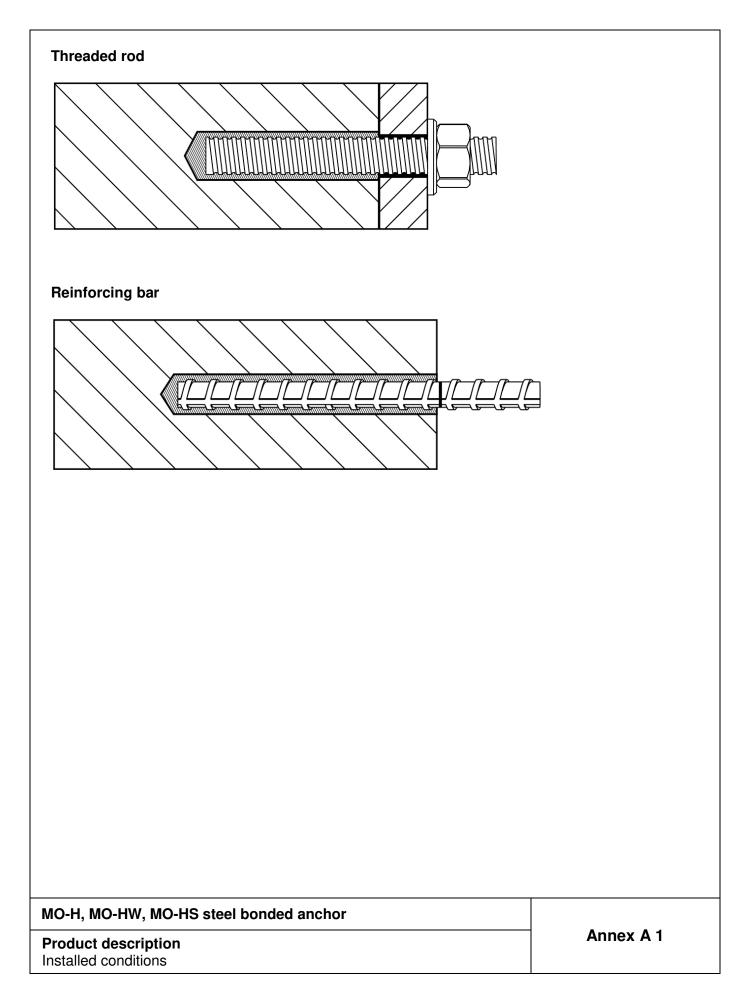
The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technical and Test Institute for Construction Prague.<sup>2</sup> The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

#### 5.2 Tasks of the notified bodies

The notified body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The notified certification body involved by the manufacturer shall issue a certificate of constancy of performance of the product stating the conformity with the provisions of this European Technical Assessment.

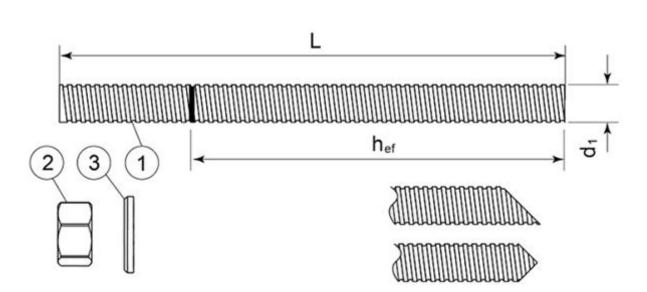
In cases where the provisions of the European Technical Assessment and its control plan are no longer fulfilled the notified body shall withdraw the certificate of constancy of performance and inform Technical and Test Institute for Construction Prague without delay.


Issued in Prague on 20.05.2018

By

Ing. Mária Schaan Head of the Technical Assessment Body

<sup>&</sup>lt;sup>1</sup> Official Journal of the European Communities L 254 of 08.10.1996


<sup>&</sup>lt;sup>2</sup> The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.



| Coaxial cartridge (CC)<br>MO-H, MO-HW, MO-HS                                                   | 150 ml<br>380 ml<br>400 ml<br>410 ml                                        |                 |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------|
| Side by side cartridge (SBS)<br>MO-H, MO-HW, MO-HS                                             | 350 ml<br>825 ml                                                            |                 |
| <b>Two part foil in a single piston o</b><br>MO-H, MO-HW, MO-HS                                | component cartridge (FCC)<br>150 ml<br>170 ml<br>300 ml<br>550 ml<br>850 ml |                 |
| <b>Peeler cartridge (PLR)</b><br>MO-H, MO-HW, MO-HS                                            | 280 ml                                                                      |                 |
| Marking of the mortar cartridges<br>Identifying mark of the producer, T<br>and processing time | s<br>rade name, Charge code number, Storag                                  | ge life, Curing |
| Mixing nozzle<br>KW                                                                            |                                                                             |                 |
| RC                                                                                             |                                                                             |                 |
| RM                                                                                             |                                                                             |                 |
| ТВ                                                                                             |                                                                             |                 |
| KR for use with 850                                                                            |                                                                             |                 |
| MO-H, MO-HW, MO-HS steel bon                                                                   | ded anchor                                                                  |                 |
| Product description                                                                            |                                                                             | Annex A 2       |

Injection system

#### Threaded rod M8, M10, M12, M16, M20, M24, M27, M30



Standard commercial threaded rod with marked embedment depth

| Part   | <b>,</b>                                                                                                          | Material                                                                       |
|--------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Stee   | I, zinc plated ≥ 5 μm acc. to EN IS0<br>I, Hot-dip galvanized ≥ 40 μm acc.<br>I, zinc diffusion coating ≥ 15 μm a | to EN ISO 1461 and EN ISO 10684 or                                             |
| 1      | Anchor rod                                                                                                        | Steel, EN 10087 or EN 10263<br>Property class 4.6, 5.8, 8.8, 10.9* EN ISO 898- |
| 2      | Hexagon nut<br>EN ISO 4032                                                                                        | According to threaded rod, EN 20898-2                                          |
| 3      | Washer<br>EN ISO 887, EN ISO 7089,<br>EN ISO 7093 or EN ISO 7094                                                  | According to threaded rod                                                      |
| Stair  | nless steel                                                                                                       |                                                                                |
| 1      | Anchor rod                                                                                                        | Material: A2-70, A4-70, A4-80, EN ISO 3506                                     |
| 2      | Hexagon nut<br>EN ISO 4032                                                                                        | According to threaded rod                                                      |
| 3      | Washer<br>EN ISO 887, EN ISO 7089,<br>EN ISO 7093 or EN ISO 7094                                                  | According to threaded rod                                                      |
| High   | corrosion resistant steel                                                                                         |                                                                                |
| 1      | Anchor rod                                                                                                        | Material: 1.4529, 1.4565, EN 10088-1                                           |
| 2      | Hexagon nut<br>EN ISO 4032                                                                                        | According to threaded rod                                                      |
| 3      | Washer<br>EN ISO 887, EN ISO 7089,<br>EN ISO 7093 or EN ISO 7094                                                  | According to threaded rod                                                      |
| *Galv  | anized rod of high strength are sens                                                                              | sitive to hydrogen induced brittle failure                                     |
| יחי    | MO-HW, MO-HS steel bonded ancl                                                                                    | bor                                                                            |
| י-ח, ו |                                                                                                                   |                                                                                |
|        | n de la Parte a                                                                                                   | Annex A 3                                                                      |

### Product description

Threaded rod and materials

## Rebar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32

Standard commercial reinforcing bar with marked embedment depth

| Product form                            | Bars and de              | -coiled rods     |       |  |
|-----------------------------------------|--------------------------|------------------|-------|--|
| Class                                   |                          | В                | С     |  |
| Characteristic yield strength fyk or fo | <sub>D,2k</sub> (MPa)    | 400 te           | o 600 |  |
| Minimum value of $k = (f_t/f_y)_k$      | ≥ 1,08                   | ≥ 1,15<br>< 1,35 |       |  |
| Characteristic strain at maximum for    | orce ε <sub>uk</sub> (%) | ≥ 5,0            | ≥ 7,5 |  |
| Bendability                             |                          | Bend/Rebend test |       |  |
| Maximum deviation from nominal          | Nominal bar size (mm)    |                  |       |  |
| mass (individual bar) (%)               | ≤ 8                      | ±6,0             |       |  |
|                                         | >8                       |                  |       |  |
| Bond: Minimum relative rib area,        |                          |                  |       |  |
| f <sub>R,min</sub>                      | 0,040                    |                  |       |  |
|                                         | > 12                     | 0,056            |       |  |

### MO-H, MO-HW, MO-HS steel bonded anchor

**Product description** Rebars and materials Annex A 4

#### Specifications of intended use

#### Anchorages subject to:

- Static and quasi-static load.
- Seismic actions category C1 (max w = 0,5 mm): threaded rod size M10, M12, M16, M20, M24

#### **Base materials**

- Uncracked concrete.
- Cracked and uncracked concrete for threaded rod size M10, M12, M16, M20, M24
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206-1:2000-12.

#### Temperature range:

• -40°C to +80°C (max. short. term temperature +80°C and max. long term temperature +50°C)

#### Use conditions (Environmental conditions)

- (X1) Structures subject to dry internal conditions (zinc coated steel, stainless steel, high corrosion resistance steel).
- (X2) Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistant steel).
- (X3) Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

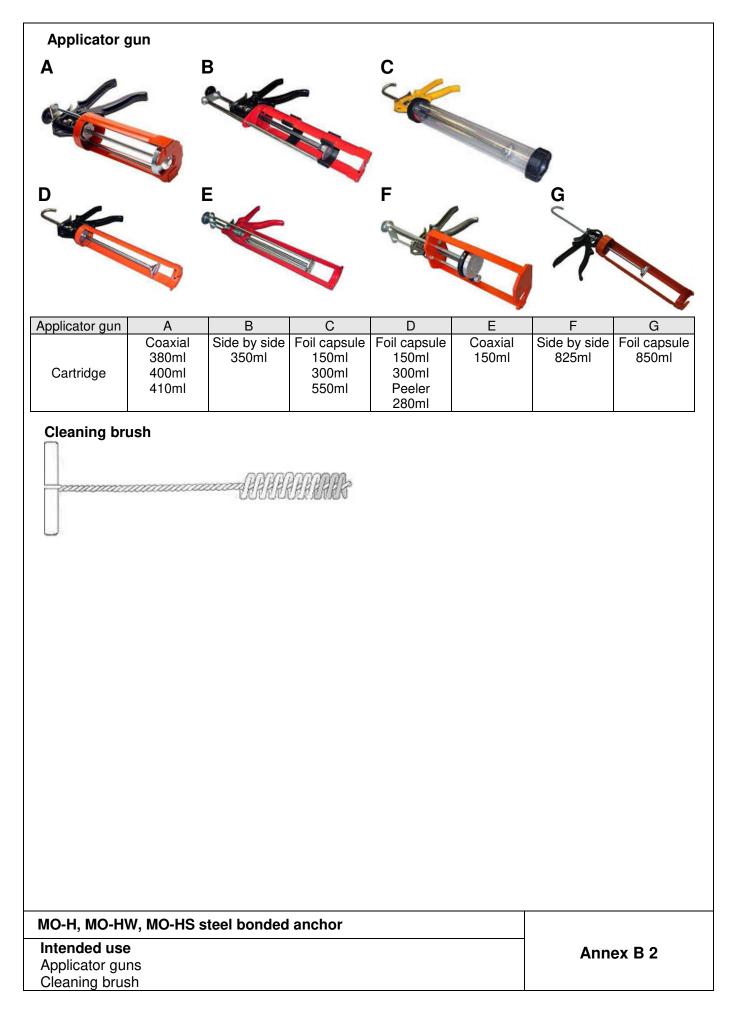
#### **Concrete conditions:**

- 11 installation in dry or wet (water saturated) concrete or flooded hole.
- I2 installation in water-filled (not sea water) and use in service in dry or wet concrete

#### Design:

- The anchorages are designed in accordance with the EN 1992-4 or EOTA Technical Report TR 055 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with EN 1992-4.

#### Installation:


- Hole drilling by hammer drill mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

#### Installation direction:

• D3 – downward and horizontal and upwards (e.g. overhead) installation

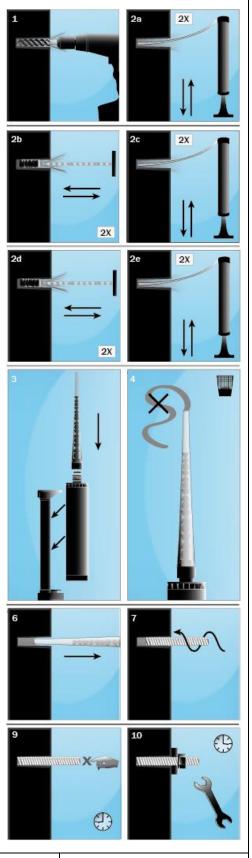
#### MO-H, MO-HW, MO-HS steel bonded anchor

Intended use Specifications



#### Installation instructions

- 1. Drill the hole to the correct diameter and depth using a rotary percussion drilling machine.
- 2. Thoroughly clean the hole in the following sequence using the brush with the required extensions and a blow pump:


Blow Clean x2. Brush Clean x2. Blow Clean x2. Brush Clean x2. Blow Clean x2.

Remove standing water from the hole prior to cleaning to achieve maximum performance.

- 3. Select the appropriate static mixer nozzle for the installation, open the cartridge/cut foil pack and screw nozzle onto the mouth of the cartridge. Insert the cartridge into a good quality applicator (gun).
- 4. Extrude the first part of the cartridge to waste until an even colour has been achieved without streaking in the resin.
- 5. If necessary, cut the extension tube to the depth of the hole and push onto the end of the mixer nozzle, and fit the correct resin stopper to the other end.
- 6. Insert the mixer nozzle (or the extension tube with resin stopper when necessary) to the bottom of the hole. Begin to extrude the resin and slowly withdraw the mixer nozzle from the hole ensuring that there are no air voids as the mixer nozzle is withdrawn. Fill the hole to approximately ½ to ¾ full and withdraw the nozzle completely.
- 7. Insert the clean threaded bar, free from oil or other release agents, to the bottom of the hole using a back and forth twisting motion ensuring all the threads are thoroughly coated. Adjust to the correct position within the stated working time.
- Excess resin will be expelled from the hole evenly around the steel element showing that the hole is full.
   This excess resin should be removed from around the mouth of the hole before it sets.
- Leave the anchor to cure.
   Do not disturb the anchor until the appropriate loading time has elapsed depending on the substrate conditions and ambient temperature.
- 10. Attach the fixture and tighten the nut to the recommended torque. **Do not overtighten**.



#### Intended use Installation procedure



Annex B 3

| Table B1: Installation parameters of threaded rod |                       |      |                   |       |         |      |     |                   |                   |     |
|---------------------------------------------------|-----------------------|------|-------------------|-------|---------|------|-----|-------------------|-------------------|-----|
| Size                                              |                       |      | M8                | M10   | M12     | M16  | M20 | M24               | M27               | M30 |
| Nominal drill hole diameter                       | $\operatorname{Ød}_0$ | [mm] | 10                | 12    | 14      | 18   | 22  | 26                | 30                | 35  |
| Diameter of cleaning brush                        | db                    | [mm] | 14                | 14    | 20      | 20   | 29  | 29                | 40                | 40  |
| Torque moment                                     | max T <sub>fix</sub>  | [Nm] | 10                | 20    | 40      | 80   | 150 | 200               | 240               | 275 |
| Depth of drill hole for hef,min                   | $h_0 = h_{ef}$        | [mm] | 64                | 80    | 96      | 128  | 160 | 192               | 216               | 240 |
| Depth of drill hole for hef,max                   | $h_0 = h_{ef}$        | [mm] | 160               | 200   | 240     | 320  | 400 | 480               | 540               | 600 |
| Minimum edge distance                             | C <sub>min</sub>      | [mm] | 35                | 40    | 50      | 65   | 80  | 96                | 110               | 120 |
| Minimum spacing                                   | Smin                  | [mm] | 35                | 40    | 50      | 65   | 80  | 96                | 110               | 120 |
| Minimum thickness of member                       | $h_{\text{min}}$      | [mm] | h <sub>ef</sub> + | 30 mn | n ≥ 100 | ) mm |     | h <sub>ef</sub> + | - 2d <sub>0</sub> |     |

#### Table B2: Installation parameters of rebar

| Size                            |                       |      | Ø8                | Ø10     | Ø12     | Ø16 | Ø20 | Ø25                  | Ø32 |
|---------------------------------|-----------------------|------|-------------------|---------|---------|-----|-----|----------------------|-----|
| Nominal drill hole diameter     | $\operatorname{Ød}_0$ | [mm] | 12                | 14      | 16      | 20  | 25  | 32                   | 40  |
| Diameter of cleaning brush      | db                    | [mm] | 14                | 14      | 19      | 22  | 29  | 40                   | 42  |
| Depth of drill hole for hef,min | $h_0 = h_{ef}$        | [mm] | 64                | 80      | 96      | 128 | 160 | 200                  | 256 |
| Depth of drill hole for hef,max | $h_0 = h_{ef}$        | [mm] | 160               | 200     | 240     | 320 | 400 | 500                  | 640 |
| Minimum edge distance           | Cmin                  | [mm] | 35                | 40      | 50      | 65  | 80  | 100                  | 130 |
| Minimum spacing                 | Smin                  | [mm] | 35                | 40      | 50      | 65  | 80  | 100                  | 130 |
| Minimum thickness of member     | h <sub>min</sub>      | [mm] | h <sub>ef</sub> - | + 30 mn | า ≥ 100 | mm  |     | h <sub>ef</sub> + 2d | ט   |

#### Table B3: Cleaning

| All diameters  |
|----------------|
| - 2 x blowing  |
| - 2 x brushing |
| - 2 x blowing  |
| - 2 x brushing |
| - 2 x blowing  |

#### Table B4: Minimum curing time

| MO-H                    |                 |           |
|-------------------------|-----------------|-----------|
| Application temperature | Processing time | Load time |
| +5 to +10°C             | 10 mins         | 145 mins  |
| +10 to +15°C            | 8 mins          | 85 mins   |
| +15 to +20°C            | 6 mins          | 75 mins   |
| +20 to +25°C            | 5 mins          | 50 mins   |
| +25 to +30°C            | 4 mins          | 40 mins   |

Processing time refers to the highest temperature in the range. Load time refers to the lowest temperature in the range. Cartridge must be conditioned to a minimum  $+5^{\circ}$ C.

| MO-HW                   |                 |           |
|-------------------------|-----------------|-----------|
| Application temperature | Processing time | Load time |
| 0 to +5°C               | 10 mins         | 75 mins   |
| +5 to +20°C             | 5 mins          | 50 mins   |
| +20°C                   | 100 second      | 20 mins   |

Processing time refers to the highest temperature in the range. Load time refers to the lowest temperature in the range. Cartridge must be conditioned to a minimum 0°C.

| MO-HS                   |                 |           |
|-------------------------|-----------------|-----------|
| Application temperature | Processing time | Load time |
| +15 to +20°C            | 15 mins         | 5 hours   |

| +15 to +20°C | 15 mins  | 5 hours  |
|--------------|----------|----------|
| +20 to +25°C | 10 mins  | 145 mins |
| +25 to +30°C | 7.5 mins | 85 mins  |
| +30 to +35°C | 5 mins   | 50 mins  |
| +35 to +40°C | 3.5 mins | 40 mins  |

Processing time refers to the highest temperature in the range. Load time refers to the lowest temperature in the range. Cartridge must be conditioned to a minimum  $+15^{\circ}$ C.

#### MO-H, MO-HW, MO-HS steel bonded anchor

## Installation parameters Curing time

Annex B 4

| Steel failure – Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |                  |                      |          |                                |                                                                                                                                                            |               |          |                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------|----------------------|----------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|-------------------------------------|
| Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     | M8               | M10                  | M12      | M16                            | M20                                                                                                                                                        | M24           | M27      | M30                                 |
| Steel grade <b>4.6</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N <sub>Rk,s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [kN]                                                                | 15               | 23                   | 34       | 63                             | 98                                                                                                                                                         | 141           | 184      | 224                                 |
| Partial safety factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | γMs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [-]                                                                 |                  |                      |          | 2,                             | 00                                                                                                                                                         |               |          |                                     |
| Steel grade <b>5.8</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N <sub>Rk,s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [kN]                                                                | 18               | 29                   | 42       | 79                             | 123                                                                                                                                                        | 177           | 230      | 281                                 |
| Partial safety factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | γMs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [-]                                                                 |                  |                      |          | 1,                             | 50                                                                                                                                                         |               |          |                                     |
| Steel grade <b>8.8</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N <sub>Rk,s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [kN]                                                                | 29               | 46                   | 67       | 126                            | 196                                                                                                                                                        | 282           | 367      | 449                                 |
| Partial safety factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | γMs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [-]                                                                 |                  |                      | •        | 1,                             | 50                                                                                                                                                         |               | •        |                                     |
| Steel grade 10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N <sub>Rk,s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [kN]                                                                | 37               | 58                   | 84       | 157                            | 245                                                                                                                                                        | 353           | 459      | 561                                 |
| Partial safety factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | γMs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [-]                                                                 |                  |                      | •        | 1,                             | 33                                                                                                                                                         |               | •        |                                     |
| Stainless steel grade A2-70, A4-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [kN]                                                                | 26               | 41                   | 59       | 110                            | 172                                                                                                                                                        | 247           | 321      | 393                                 |
| Partial safety factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | γMs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [-]                                                                 |                  |                      |          |                                | 87                                                                                                                                                         | •             |          |                                     |
| Stainless steel grade A4-80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N <sub>Rk,s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [kN]                                                                | 29               | 46                   | 67       | 126                            | 196                                                                                                                                                        | 282           | 367      | 449                                 |
| Partial safety factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | γMs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [-]                                                                 |                  |                      |          |                                | 60                                                                                                                                                         |               |          |                                     |
| Stainless steel grade 1.4529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N <sub>Rk,s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [kN]                                                                | 26               | 41                   | 59       | 110                            | 172                                                                                                                                                        | 247           | 321      | 393                                 |
| Partial safety factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | γMs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [-]                                                                 |                  |                      |          |                                | 50                                                                                                                                                         |               |          |                                     |
| Stainless steel grade <b>1.4565</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N <sub>Rk,s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [kN]                                                                | 26               | 41                   | 59       | 110                            | 172                                                                                                                                                        | 247           | 321      | 393                                 |
| Partial safety factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | γMs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [-]                                                                 |                  |                      |          |                                | 87                                                                                                                                                         |               |          |                                     |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |                  |                      |          |                                |                                                                                                                                                            |               |          |                                     |
| Combined pullout and concr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ete cone failu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ire in ur                                                           |                  |                      |          |                                |                                                                                                                                                            |               |          |                                     |
| Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |                  | M8   N               | 110 M    | 12 M                           | 16 M2                                                                                                                                                      | 20 M24        | 4 M27    | 7 M30                               |
| Characteristic bond resistan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ce in uncrack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ed con                                                              | crete            |                      |          |                                |                                                                                                                                                            |               |          |                                     |
| Dry and wet concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $	au_{Rk,ucr}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [N/mm                                                               | 1 <sup>2</sup> ] | 10 9                 | 9,5 9    | ,5 9                           | ) 8,                                                                                                                                                       | 5 8           | 6,5      | 5,5                                 |
| Installation safety factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\gamma_2^{(1)} = \gamma_{inst}^{(2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [-]                                                                 |                  |                      |          | 1,2                            |                                                                                                                                                            |               |          | 1,4                                 |
| Flooded hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | τ <sub>Rk,ucr</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     | <sup>2</sup> ] { | 8,5 7                | 7,5      | 7 7                            | 7 6,                                                                                                                                                       | 5 5,5         |          |                                     |
| Installation safety factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\gamma_2^{(1)} = \gamma_{inst}^{(2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [-]                                                                 |                  | -,                   | ,-       |                                | 1,4                                                                                                                                                        | ,-            |          |                                     |
| Factor for concrete C50/60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ψc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [-]                                                                 |                  |                      |          |                                | 1                                                                                                                                                          |               |          |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |                  |                      |          |                                |                                                                                                                                                            |               |          |                                     |
| Combined pullout and concr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ete cone failu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ire in cr                                                           | acke             | d con                | crete (  | C20/25                         |                                                                                                                                                            |               |          |                                     |
| Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |                  | M10                  | M        | 10                             | M16                                                                                                                                                        | M2            | <u>م</u> | M24                                 |
| Characteristic bond resistan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |                  |                      | IVI      | 12                             |                                                                                                                                                            |               | U        |                                     |
| onaraoichisile pullu i CSISIdii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ce in cracked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | concre                                                              | ete              | mite                 | IVI      | 12                             | IN TO                                                                                                                                                      | IVIZ          | U        | 1012-1                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |                  |                      |          |                                |                                                                                                                                                            |               |          |                                     |
| Dry and wet concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $	au_{Rk,cr}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |                  | 4,5                  | 4,       |                                | 4,5                                                                                                                                                        | 4             |          | 4                                   |
| Dry and wet concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\tau_{Rk,cr}$<br>$\gamma_2^{(1)} = \gamma_{inst}^{(2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [N/mm<br>[-]                                                        | 1 <sup>2</sup> ] | 4,5                  | 4,       | 5                              | 4,5<br>1,2                                                                                                                                                 | 4             |          | 4                                   |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $	au_{Rk,cr}$<br>$\gamma_2^{(1)} = \gamma_{inst}^{(2)}$<br>$	au_{Rk,cr}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [N/mm<br>[-]<br>[N/mm                                               | 1 <sup>2</sup> ] |                      |          | 5                              | 4,5<br>1,2<br>4,5                                                                                                                                          |               |          |                                     |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} & \tau_{\text{Rk,cr}} \\ & \gamma_2{}^{(1)} = \gamma_{\text{inst}}{}^{(2)} \\ & \tau_{\text{Rk,cr}} \\ & \gamma_2{}^{(1)} = \gamma_{\text{inst}}{}^{(2)} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [N/mm<br>[-]                                                        | 1 <sup>2</sup> ] | 4,5                  | 4,       | 5                              | 4,5<br>1,2<br>4,5<br>1,4                                                                                                                                   | 4             |          | 4                                   |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{\tau_{\text{Rk,cr}}}{\gamma_2^{1)} = \gamma_{\text{inst}}^{2}} \frac{\tau_{\text{Rk,cr}}}{\tau_{\text{Rk,cr}}}$ $\frac{\gamma_2^{1)} = \gamma_{\text{inst}}^{2}}{230/37}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [N/mm<br>[-]<br>[N/mm<br>[-]                                        | 1 <sup>2</sup> ] | 4,5                  | 4,       | 5                              | 4,5<br>1,2<br>4,5<br>1,4<br>1,12                                                                                                                           | 4             |          | 4                                   |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor<br>Factor for cracked concrete                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{\frac{\tau_{\text{Rk,cr}}}{\gamma_2^{1)}=\gamma_{\text{inst}}^{2)}}{\tau_{\text{Rk,cr}}}}{\frac{\tau_{\text{Rk,cr}}}{\gamma_2^{1)}=\gamma_{\text{inst}}^{2)}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [N/mm<br>[-]<br>[N/mm                                               | 1 <sup>2</sup> ] | 4,5                  | 4,       | 5                              | 4,5<br>1,2<br>4,5<br>1,4<br>1,12<br>1,23                                                                                                                   | 4             |          | 4                                   |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor<br>Factor for cracked concrete                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{\tau_{\text{Rk,cr}}}{\gamma_2^{1)} = \gamma_{\text{inst}}^{2}} \frac{\tau_{\text{Rk,cr}}}{\tau_{\text{Rk,cr}}}$ $\frac{\gamma_2^{1)} = \gamma_{\text{inst}}^{2}}{230/37}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [N/mm<br>[-]<br>[N/mm<br>[-]                                        | 1 <sup>2</sup> ] | 4,5                  | 4,       | 5                              | 4,5<br>1,2<br>4,5<br>1,4<br>1,12                                                                                                                           | 4             |          | 4                                   |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor<br>Factor for cracked concrete                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{\frac{\tau_{\text{Rk,cr}}}{\gamma_2^{1)}=\gamma_{\text{inst}}^{2)}}{\tau_{\text{Rk,cr}}}}{\frac{\tau_{\text{Rk,cr}}}{\gamma_2^{1)}=\gamma_{\text{inst}}^{2)}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [N/mm<br>[-]<br>[N/mm<br>[-]                                        | 1 <sup>2</sup> ] | 4,5                  | 4,       | 5                              | 4,5<br>1,2<br>4,5<br>1,4<br>1,12<br>1,23                                                                                                                   | 4             |          | 4                                   |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor<br>Factor for cracked concrete<br>Concrete cone failure                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \tau_{\text{Rk,cr}} \\ \gamma_2{}^{1)} = \gamma_{\text{inst}}{}^{2)} \\ \hline \tau_{\text{Rk,cr}} \\ \gamma_2{}^{1)} = \gamma_{\text{inst}}{}^{2)} \\ \tau_2{}^{30/37} \\ \tau_2{}^{30/37} \\ \tau_2{}^{40/50} \\ \tau_c \\ \tau$ | [N/mm<br>[-]<br>[N/mm<br>[-]                                        | 1 <sup>2</sup> ] | 4,5                  | 4,       | 5                              | 4,5<br>1,2<br>4,5<br>1,4<br>1,12<br>1,23<br>1,30                                                                                                           | 4             |          | 4                                   |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor<br>Factor for cracked concrete<br>Concrete cone failure<br>Factor for concrete cone failure                                                                                                                                                                                                                                                                                                                                                           | $\frac{\tau_{\text{Rk,cr}}}{\gamma_2^{1)} = \gamma_{\text{inst}}^{2)} \tau_{\text{Rk,cr}}} \frac{\tau_{\text{Rk,cr}}}{\gamma_2^{1)} = \gamma_{\text{inst}}^{2)}} \frac{\tau_{\text{Rk,cr}}}{\gamma_2^{10} = \gamma_{\text{inst}}^{2}} \frac{\gamma_2^{10}}{\gamma_2^{10}} \gamma_2$                                                  | [N/mm<br>[-]<br>[N/mm<br>[-]                                        | 1 <sup>2</sup> ] | 4,5                  | 4,       | 5                              | 4,5<br>1,2<br>4,5<br>1,4<br>1,12<br>1,23<br>1,30                                                                                                           | 4             |          | 4                                   |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor<br>Factor for cracked concrete<br>Concrete cone failure<br>Factor for concrete cone failure<br>for uncracked concrete                                                                                                                                                                                                                                                                                                                                 | $\frac{\tau_{\text{Rk,cr}}}{\gamma_2^{1)} = \gamma_{\text{inst}}^{2)} \tau_{\text{Rk,cr}}} \frac{\tau_{\text{Rk,cr}}}{\gamma_2^{1)} = \gamma_{\text{inst}}^{2)}} \frac{\tau_{\text{Rk,cr}}}{\gamma_2^{10} = \gamma_{\text{inst}}^{2}} \frac{\gamma_2^{10}}{\gamma_2^{10}} \gamma_2$                                                  | [N/mm<br>[-]<br>[N/mm<br>[-]                                        | 1 <sup>2</sup> ] | 4,5                  | 4,       | 5                              | 4,5<br>1,2<br>4,5<br>1,4<br>1,12<br>1,23<br>1,30<br>10,1<br>11                                                                                             | 4             |          | 4                                   |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor<br>Factor for cracked concrete<br>Concrete cone failure<br>Factor for concrete cone failure<br>for uncracked concrete<br>Factor for concrete cone failure                                                                                                                                                                                                                                                                                             | $\begin{array}{c} & TRk,cr \\ & \gamma 2^{1)} = \gamma inst^{2)} \\ & TRk,cr \\ & \gamma 2^{1)} = \gamma inst^{2)} \\ \hline & 0.0037 \\ $                                                                                                                                                                                                                                                                                                                                                                                                             | [N/mm<br>[-]<br>[N/mm<br>[-]                                        | 1 <sup>2</sup> ] | 4,5                  | 4,       | 5                              | 4,5<br>1,2<br>4,5<br>1,4<br>1,12<br>1,23<br>1,30<br>10,1<br>11<br>7,2                                                                                      | 4             |          | 4                                   |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor<br>Factor for cracked concrete<br>Concrete cone failure<br>Factor for concrete cone failure<br>for uncracked concrete<br>Factor for concrete cone failure<br>for cracked concrete                                                                                                                                                                                                                                                                     | $\begin{array}{c} & {}^{\text{TRk,cr}} \\ \gamma_2{}^{1)} = \gamma_{inst}{}^{2)} \\ {}^{\text{TRk,cr}} \\ \gamma_2{}^{1)} = \gamma_{inst}{}^{2)} \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [N/mm<br>[-]<br>[N/mm<br>[-]                                        | 1 <sup>2</sup> ] | 4,5                  | 4,       | 5                              | 4,5<br>1,2<br>4,5<br>1,4<br>1,12<br>1,23<br>1,30<br>10,1<br>11<br>7,2<br>7,7                                                                               | 4             |          | 4                                   |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor<br>Factor for cracked concrete<br>Concrete cone failure<br>Factor for concrete cone failure<br>for uncracked concrete<br>Factor for concrete cone failure<br>for cracked concrete<br>Edge distance                                                                                                                                                                                                                                                    | $\begin{array}{c} & {}^{\text{TRk,cr}} \\ \gamma_2{}^{1)} = \gamma_{inst}{}^{2)} \\ {}^{\text{TRk,cr}} \\ \gamma_2{}^{1)} = \gamma_{inst}{}^{2)} \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [N/mm<br>[-]<br>[N/mm<br>[-]<br>[-]                                 | 1 <sup>2</sup> ] | 4,5                  | 4,       | 5                              | 4,5<br>1,2<br>4,5<br>1,4<br>1,12<br>1,23<br>1,30<br>10,1<br>11<br>7,2<br>7,7<br>1,5hef                                                                     |               |          | 4                                   |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor<br>Factor for cracked concrete<br>Concrete cone failure<br>Factor for concrete cone failure<br>for uncracked concrete<br>Factor for concrete cone failure<br>for cracked concrete                                                                                                                                                                                                                                                                     | $\begin{array}{c} & {}^{\text{TRk,cr}} \\ \gamma_2{}^{1)} = \gamma_{inst}{}^{2)} \\ {}^{\text{TRk,cr}} \\ \gamma_2{}^{1)} = \gamma_{inst}{}^{2)} \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [N/mm<br>[-]<br>[N/mm<br>[-]                                        | 1 <sup>2</sup> ] | 4,5                  | 4,       | 5                              | 4,5<br>1,2<br>4,5<br>1,4<br>1,12<br>1,23<br>1,30<br>10,1<br>11<br>7,2<br>7,7<br>1,5hef                                                                     | 4             |          | 4                                   |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor<br>Factor for cracked concrete<br>Factor for concrete cone failure<br>for uncracked concrete<br>Factor for concrete cone failure<br>for cracked concrete<br>Edge distance<br>Installation safety factor                                                                                                                                                                                                                                               | $\begin{array}{c} & {}^{\text{TRk,cr}} \\ \gamma_2{}^{1)} = \gamma_{inst}{}^{2)} \\ {}^{\text{TRk,cr}} \\ \gamma_2{}^{1)} = \gamma_{inst}{}^{2)} \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [N/mm<br>[-]<br>[N/mm<br>[-]<br>[-]                                 | 1 <sup>2</sup> ] | 4,5                  | 4,       | 5                              | 4,5<br>1,2<br>4,5<br>1,4<br>1,12<br>1,23<br>1,30<br>10,1<br>11<br>7,2<br>7,7<br>1,5hef                                                                     |               |          | 4                                   |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor<br>Factor for cracked concrete<br>Concrete cone failure<br>Factor for concrete cone failure<br>for uncracked concrete<br>Factor for concrete cone failure<br>for cracked concrete<br>Edge distance<br>Installation safety factor<br>Splitting failure                                                                                                                                                                                                 | $\begin{array}{c} & {}^{\text{TRk,cr}} \\ \gamma_2{}^{1)} = \gamma_{inst}{}^{2)} \\ {}^{\text{TRk,cr}} \\ \gamma_2{}^{1)} = \gamma_{inst}{}^{2)} \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [N/mm<br>[-]<br>[N/mm<br>[-]<br>[-]                                 |                  | 4,5<br>4,5<br>see Co | 4,<br>4, | 5                              | 4,5<br>1,2<br>4,5<br>1,4<br>1,12<br>1,23<br>1,30<br>10,1<br>11<br>7,2<br>7,7<br>1,5h <sub>ef</sub><br>tt and c                                             | 4             | cone fa  | 4<br>4<br>ailure                    |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor<br>Factor for cracked concrete<br>Factor for cracked concrete<br>Factor for concrete cone failure<br>for uncracked concrete<br>Factor for concrete cone failure<br>for cracked concrete<br>Edge distance<br>Installation safety factor<br>Splitting failure<br>Size                                                                                                                                                                                   | $\begin{array}{c} & {}^{\text{TRk,cr}} \\ \gamma 2^{1)} = \gamma inst^{2)} \\ & {}^{\text{TRk,cr}} \\ \gamma 2^{1)} = \gamma inst^{2)} \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [N/mm<br>[-]<br>[N/mm<br>[-]<br>[-]                                 |                  | 4,5<br>4,5<br>see Co | 4,<br>4, | 5                              | 4,5<br>1,2<br>4,5<br>1,4<br>1,12<br>1,23<br>1,30<br>10,1<br>11<br>7,2<br>7,7<br>1,5hef<br>it and c                                                         |               | cone fa  | 4<br>4<br>ailure                    |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor<br>Factor for cracked concrete<br>Factor for concrete cone failure<br>for uncracked concrete<br>Factor for concrete cone failure<br>for cracked concrete<br>Factor for concrete cone failure<br>for cracked concrete<br>Factor for concrete cone failure<br>for cracked concrete<br>Edge distance<br>Installation safety factor<br>Splitting failure<br>Size<br>Edge distance                                                                         | $\frac{\tau_{Rk,cr}}{\gamma_2^{1)}=\gamma_{inst}^{2)}} \frac{\tau_{Rk,cr}}{\tau_{Rk,cr}}$ $\frac{\gamma_2^{1)}=\gamma_{inst}^{2)}}{230/37}$ $240/50  \psi_c$ $250/60$ $\frac{k_1^{11}}{k_{ucr,N}^{2)}}$ $\frac{k_1^{11}}{k_{cr,N}^{2}}$ $\frac{c_{cr,N}}{\gamma_2^{1)}=\gamma_{inst}^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [N/mm<br>[-]<br>[N/mm<br>[-]<br>[-]<br>[-]                          |                  | 4,5<br>4,5<br>see Co | 4,<br>4, | 5 5<br>5 4<br>6 pullou         | 4,5<br>1,2<br>4,5<br>1,4<br>1,12<br>1,23<br>1,30<br>10,1<br>11<br>7,2<br>7,7<br>1,5h <sub>ef</sub><br>it and c<br>16 M2<br>1,5h <sub>ef</sub>              | 4             | cone fa  | 4<br>4<br>ailure                    |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor<br>Factor for cracked concrete<br>Factor for concrete cone failure<br>for uncracked concrete<br>Factor for concrete cone failure<br>for cracked concrete<br>Factor for concrete cone failure<br>for cracked concrete<br>Edge distance<br>Installation safety factor<br>Splitting failure<br>Size<br>Edge distance<br>Spacing                                                                                                                          | $\begin{array}{c} & {}^{\text{TRk,cr}} \\ \gamma 2^{1)} = \gamma inst^{2)} \\ & {}^{\text{TRk,cr}} \\ \gamma 2^{1)} = \gamma inst^{2)} \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \end{array} \\ \begin{array}{c} \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \end{array} \\ \begin{array}{c} \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \end{array} \\ \begin{array}{c} \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \end{array} \\ \begin{array}{c} \hline \end{array} \\ \end{array} \\ \begin{array}{c} \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \hline \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \hline \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \hline \end{array} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                        | [N/mm<br>[-]<br>[N/mm<br>[-]<br>[-]<br>[-]                          |                  | 4,5<br>4,5<br>see Co | 4,<br>4, | 5 5<br>5 4<br>d pullou<br>12 M | 4,5<br>1,2<br>4,5<br>1,4<br>1,12<br>1,23<br>1,30<br>10,1<br>11<br>7,2<br>7,7<br>1,5h <sub>ef</sub><br>tt and c<br>1,5h <sub>ef</sub><br>3,0h <sub>ef</sub> | 4<br>4<br>0 4 | cone fa  | 4<br>4<br>ailure<br>7   M30         |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor<br>Factor for cracked concrete<br>Factor for concrete cone failure<br>for uncracked concrete<br>Factor for concrete cone failure<br>for cracked concrete<br>Edge distance<br>Installation safety factor<br>Splitting failure<br>Size<br>Edge distance<br>Spacing<br>Installation safety factor                                                                                                                                                        | $\begin{array}{c} & {}^{\text{TRk,cr}} \\ & \gamma_2{}^{1)} {=} \gamma_{\text{inst}}{}^{2)} \\ & {}^{\text{TRk,cr}} \\ & \gamma_2{}^{1)} {=} \gamma_{\text{inst}}{}^{2)} \\ \hline & 230/37 \\ \hline & 240/50  \Psi_c \\ \hline & C50/60 \\ \hline \\ \hline & & k_{11} \\ \hline & k_{\text{ucr,N}}{}^{2)} \\ \hline & & k_{11} \\ \hline & k_{\text{ucr,N}}{}^{2)} \\ \hline & & k_{11} \\ \hline & k_{\text{cr,N}}{}^{2} \\ \hline & & c_{\text{cr,N}} \\ \hline & & \gamma_2{}^{1)} {=} \gamma_{\text{inst}}{}^{2} \\ \hline & & c_{\text{cr,sp}} \\ \hline & & s_{\text{cr,sp}} \\ \hline & & \gamma_2{}^{1)} {=} \gamma_{\text{inst}}{}^{2} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [N/mm<br>[-]<br>[N/mm<br>[-]<br>[-]<br>[-]                          |                  | 4,5<br>4,5<br>see Co | 4,<br>4, | 5 5<br>5 4<br>d pullou<br>12 M | 4,5<br>1,2<br>4,5<br>1,4<br>1,12<br>1,23<br>1,30<br>10,1<br>11<br>7,2<br>7,7<br>1,5h <sub>ef</sub><br>tt and c<br>1,5h <sub>ef</sub><br>3,0h <sub>ef</sub> | 4             | cone fa  | 4<br>4<br>ailure<br>7   M30         |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor<br>Factor for cracked concrete<br>Factor for concrete cone failure<br>for uncracked concrete<br>Factor for concrete cone failure<br>for cracked concrete<br>Factor for concrete cone failure<br>for cracked concrete<br>Edge distance<br>Installation safety factor<br>Splitting failure<br>Size<br>Edge distance<br>Spacing                                                                                                                          | $\begin{array}{c} & {}^{\text{TRk,cr}} \\ & \gamma_2{}^{1)} {=} \gamma_{\text{inst}}{}^{2)} \\ & {}^{\text{TRk,cr}} \\ & \gamma_2{}^{1)} {=} \gamma_{\text{inst}}{}^{2)} \\ \hline & 230/37 \\ \hline & 240/50  \Psi_c \\ \hline & C50/60 \\ \hline \\ \hline & & k_{11} \\ \hline & k_{\text{ucr,N}}{}^{2)} \\ \hline & & k_{11} \\ \hline & k_{\text{ucr,N}}{}^{2)} \\ \hline & & k_{11} \\ \hline & k_{\text{cr,N}}{}^{2} \\ \hline & & c_{\text{cr,N}} \\ \hline & & \gamma_2{}^{1)} {=} \gamma_{\text{inst}}{}^{2} \\ \hline & & c_{\text{cr,sp}} \\ \hline & & s_{\text{cr,sp}} \\ \hline & & \gamma_2{}^{1)} {=} \gamma_{\text{inst}}{}^{2} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [N/mm<br>[-]<br>[N/mm<br>[-]<br>[-]<br>[-]                          |                  | 4,5<br>4,5<br>see Co | 4,<br>4, | 5 5<br>5 4<br>d pullou<br>12 M | 4,5<br>1,2<br>4,5<br>1,4<br>1,12<br>1,23<br>1,30<br>10,1<br>11<br>7,2<br>7,7<br>1,5h <sub>ef</sub><br>tt and c<br>1,5h <sub>ef</sub><br>3,0h <sub>ef</sub> | 4<br>4<br>0 4 | cone fa  | 4<br>4<br>ailure<br>7   M30         |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor<br>Factor for cracked concrete<br>Factor for concrete cone failure<br>for uncracked concrete<br>Factor for concrete cone failure<br>for cracked concrete<br>Edge distance<br>Installation safety factor<br>Splitting failure<br>Size<br>Edge distance<br>Spacing<br>Installation safety factor                                                                                                                                                        | $\frac{\tau_{\text{Rk,cr}}}{\gamma_2^{1)}=\gamma_{\text{inst}}^{2)}}$ $\frac{\tau_{\text{Rk,cr}}}{\gamma_{\text{Rk,cr}}}$ $\frac{\gamma_2^{1)}=\gamma_{\text{inst}}^{2)}}{\gamma_{\text{Cl}}}$ $\frac{\gamma_2^{1)}=\gamma_{\text{inst}}^{2}}{\gamma_{\text{Cl}}}$ $\frac{\gamma_2^{1)}=\gamma_{\text{inst}}^{2}}{\gamma_2^{1)}=\gamma_{\text{inst}}^{2}}$ $\frac{c_{\text{cr,N}}}{\gamma_2^{1)}=\gamma_{\text{inst}}^{2}}$ $\frac{c_{\text{cr,sp}}}{\gamma_2^{1)}=\gamma_{\text{inst}}^{2}}$ $c_{\text{chrical Report}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [N/mm<br>[-]<br>[N/mm<br>[-]<br>[-]<br>[-]                          |                  | 4,5<br>4,5<br>see Co | 4,<br>4, | 5 5<br>5 4<br>d pullou<br>12 M | 4,5<br>1,2<br>4,5<br>1,4<br>1,12<br>1,23<br>1,30<br>10,1<br>11<br>7,2<br>7,7<br>1,5h <sub>ef</sub><br>tt and c<br>1,5h <sub>ef</sub><br>3,0h <sub>ef</sub> | 4<br>4<br>0 4 | cone fa  | 4<br>4<br>ailure<br>7   M30         |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor<br>Factor for cracked concrete<br>Factor for concrete cone failure<br>for uncracked concrete<br>Factor for concrete cone failure<br>for uncracked concrete<br>Factor for concrete cone failure<br>for cracked concrete<br>Edge distance<br>Installation safety factor<br>Splitting failure<br>Size<br>Edge distance<br>Spacing<br>Installation safety factor<br><sup>1)</sup> Design according EOTA Tec<br><sup>2)</sup> Design according EN 1992-4   | $\frac{\tau_{Rk,cr}}{\gamma_2^{1)}=\gamma_{inst}^{2)}} \frac{\tau_{Rk,cr}}{\tau_{Rk,cr}}$ $\frac{\gamma_2^{1)}=\gamma_{inst}^{2)}}{\gamma_2^{1)}=\gamma_{inst}^{2)}}$ $\frac{\zeta_{230/37}}{\zeta_{240/50}} \psi_c$ $\frac{\zeta_{250/60}}{\psi_c}$ $\frac{k_1^{11}}{k_{ucr,N^{2}}} \frac{k_1^{11}}{k_{ucr,N^{2}}} \frac{k_1^{11}}{k_{cr,N^{2}}} \frac{c_{cr,N}}{c_{cr,N}}}{\zeta_{cr,N}}$ $\frac{\zeta_{cr,sp}}{\gamma_2^{11}=\gamma_{inst}^{2)}}$ $\frac{\zeta_{cr,sp}}{\gamma_2^{11}=\gamma_{inst}^{2)}}$ $\frac{\zeta_{cr,sp}}{\gamma_2^{11}=\gamma_{inst}^{2}}$ $\frac{\zeta_{cr,sp}}{\gamma_2^{11}=\gamma_{inst}^{2}}$ $\frac{\zeta_{cr,sp}}{\gamma_2^{11}=\gamma_{inst}^{2}}$ $\frac{\zeta_{cr,sp}}{\gamma_2^{11}=\gamma_{inst}^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [N/mm<br>[-]<br>[N/mm<br>[-]<br>[-]<br>[-]<br>[mm]<br>[-]<br>TR 055 |                  | 4,5<br>4,5<br>see Co | 4,<br>4, | 5 5<br>5 4<br>d pullou<br>12 M | 4,5<br>1,2<br>4,5<br>1,4<br>1,12<br>1,23<br>1,30<br>10,1<br>11<br>7,2<br>7,7<br>1,5h <sub>ef</sub><br>tt and c<br>1,5h <sub>ef</sub><br>3,0h <sub>ef</sub> | 4<br>4<br>0 4 | cone fa  | 4<br>4<br>ailure<br>7   M30         |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor<br>Factor for cracked concrete<br>Factor for concrete cone failure<br>for uncracked concrete<br>Factor for concrete cone failure<br>for cracked concrete<br>Factor for concrete cone failure<br>for cracked concrete<br>Edge distance<br>Installation safety factor<br>Splitting failure<br>Size<br>Edge distance<br>Spacing<br>Installation safety factor<br>1) Design according EOTA Teo<br>2) Design according EN 1992-4<br>O-H, MO-HW, MO-HS stee | $\frac{\tau_{Rk,cr}}{\gamma_2^{1)}=\gamma_{inst}^{2)}} \frac{\tau_{Rk,cr}}{\tau_{Rk,cr}}$ $\frac{\gamma_2^{1)}=\gamma_{inst}^{2)}}{\gamma_2^{1)}=\gamma_{inst}^{2)}}$ $\frac{\zeta_{230/37}}{\zeta_{240/50}} \psi_c$ $\frac{\zeta_{250/60}}{\psi_c}$ $\frac{k_1^{11}}{k_{ucr,N^{2}}} \frac{k_1^{11}}{k_{ucr,N^{2}}} \frac{k_1^{11}}{k_{cr,N^{2}}} \frac{c_{cr,N}}{c_{cr,N}}}{\zeta_{cr,N}}$ $\frac{\zeta_{cr,sp}}{\gamma_2^{11}=\gamma_{inst}^{2)}}$ $\frac{\zeta_{cr,sp}}{\gamma_2^{11}=\gamma_{inst}^{2)}}$ $\frac{\zeta_{cr,sp}}{\gamma_2^{11}=\gamma_{inst}^{2}}$ $\frac{\zeta_{cr,sp}}{\gamma_2^{11}=\gamma_{inst}^{2}}$ $\frac{\zeta_{cr,sp}}{\gamma_2^{11}=\gamma_{inst}^{2}}$ $\frac{\zeta_{cr,sp}}{\gamma_2^{11}=\gamma_{inst}^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [N/mm<br>[-]<br>[N/mm<br>[-]<br>[-]<br>[-]<br>[mm]<br>[-]<br>TR 055 |                  | 4,5<br>4,5<br>see Co | 4,<br>4, | 5 5<br>5 4<br>d pullou<br>12 M | 4,5<br>1,2<br>4,5<br>1,4<br>1,12<br>1,23<br>1,30<br>10,1<br>11<br>7,2<br>7,7<br>1,5h <sub>ef</sub><br>tt and c<br>1,5h <sub>ef</sub><br>3,0h <sub>ef</sub> | 4<br>4<br>0 4 | cone fa  | 4<br>4<br>ailure<br>7   M30         |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor<br>Factor for cracked concrete<br>Factor for concrete cone failure<br>for uncracked concrete<br>Factor for concrete cone failure<br>for uncracked concrete<br>Factor for concrete cone failure<br>for cracked concrete<br>Edge distance<br>Installation safety factor<br>Splitting failure<br>Size<br>Edge distance<br>Spacing<br>Installation safety factor<br><sup>1)</sup> Design according EOTA Tec<br><sup>2)</sup> Design according EN 1992-4   | $\frac{\tau_{Rk,cr}}{\gamma_2^{1)}=\gamma_{inst}^{2)}} \frac{\tau_{Rk,cr}}{\tau_{Rk,cr}}$ $\frac{\gamma_2^{1)}=\gamma_{inst}^{2)}}{\gamma_2^{1)}=\gamma_{inst}^{2)}}$ $\frac{\zeta_{230/37}}{\zeta_{240/50}} \psi_c$ $\frac{\zeta_{250/60}}{\psi_c}$ $\frac{k_1^{11}}{k_{ucr,N^{2}}} \frac{k_1^{11}}{k_{ucr,N^{2}}} \frac{k_1^{11}}{k_{cr,N^{2}}} \frac{c_{cr,N}}{c_{cr,N}}}{\zeta_{cr,N}}$ $\frac{\zeta_{cr,sp}}{\gamma_2^{11}=\gamma_{inst}^{2)}}$ $\frac{\zeta_{cr,sp}}{\gamma_2^{11}=\gamma_{inst}^{2)}}$ $\frac{\zeta_{cr,sp}}{\gamma_2^{11}=\gamma_{inst}^{2}}$ $\frac{\zeta_{cr,sp}}{\gamma_2^{11}=\gamma_{inst}^{2}}$ $\frac{\zeta_{cr,sp}}{\gamma_2^{11}=\gamma_{inst}^{2}}$ $\frac{\zeta_{cr,sp}}{\gamma_2^{11}=\gamma_{inst}^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [N/mm<br>[-]<br>[N/mm<br>[-]<br>[-]<br>[-]<br>[mm]<br>[-]<br>TR 055 |                  | 4,5<br>4,5<br>see Co | 4,<br>4, | 5 5<br>5 4<br>d pullou<br>12 M | 4,5<br>1,2<br>4,5<br>1,4<br>1,12<br>1,23<br>1,30<br>10,1<br>11<br>7,2<br>7,7<br>1,5h <sub>ef</sub><br>tt and c<br>1,5h <sub>ef</sub><br>3,0h <sub>ef</sub> | 4<br>4<br>0 4 | cone fa  | 4<br>4<br>ailure<br>7 M30<br>ailure |
| Dry and wet concrete<br>Installation safety factor<br>Flooded hole<br>Installation safety factor<br>Factor for cracked concrete<br>Factor for concrete cone failure<br>for uncracked concrete<br>Factor for concrete cone failure<br>for cracked concrete<br>Factor for concrete cone failure<br>for cracked concrete<br>Edge distance<br>Installation safety factor<br>Splitting failure<br>Size<br>Edge distance<br>Spacing<br>Installation safety factor<br>1) Design according EOTA Teo<br>2) Design according EN 1992-4<br>O-H, MO-HW, MO-HS stee | $\frac{\text{TRk,cr}}{\gamma 2^{1)} = \gamma \text{inst}^{2)}}$ $\frac{\text{TRk,cr}}{\gamma 2^{1)} = \gamma \text{inst}^{2)}}$ $\frac{\text{TRk,cr}}{\gamma 2^{1)} = \gamma \text{inst}^{2)}}$ $\frac{\text{C30/37}}{\text{C40/50}}$ $\frac{\text{C40/50}}{\text{C50/60}} \text{ $\psi_c$}$ $\frac{\text{C50/60}}{\text{C50/60}}$ $\frac{\text{C}_{cr,N^2}}{\text{C}_{cr,N^2}}$ $\frac{\text{C}_{cr,N^2}}{\text{C}_{cr,N}}$ $\frac{\gamma 2^{1)} = \gamma \text{inst}^{2)}}{\text{C}_{cr,Sp}}$ $\frac{\text{C}_{cr,Sp}}{\gamma 2^{1)} = \gamma \text{inst}^{2)}}$ $\frac{\text{Chnical Report}}{\text{C}_{cr,Sp}}$ $\frac{\text{Constant Report}}{\text{C}_{cr,Sp}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [N/mm<br>[-]<br>[N/mm<br>[-]<br>[-]<br>[-]<br>[mm]<br>[-]<br>TR 055 |                  | 4,5<br>4,5<br>see Co | 4,<br>4, | 5 5<br>5 4<br>d pullou<br>12 M | 4,5<br>1,2<br>4,5<br>1,4<br>1,12<br>1,23<br>1,30<br>10,1<br>11<br>7,2<br>7,7<br>1,5h <sub>ef</sub><br>tt and c<br>1,5h <sub>ef</sub><br>3,0h <sub>ef</sub> | 4<br>4<br>0 4 | cone fa  | 4<br>4<br>ailure<br>7 M30<br>ailure |

Page 13 of 19 ETA 14/0138 issued on 20/05/2018 and replacing ETA 14/0138 issued on 17/03/2016

# Table C2: Design method EN 1992-4 Characteristic values of resistance to tension load of rebar

| Steel failure – Characteristic resistance |                   |      |    |     |     |     |     |     |     |  |  |
|-------------------------------------------|-------------------|------|----|-----|-----|-----|-----|-----|-----|--|--|
| Size                                      |                   |      | Ø8 | Ø10 | Ø12 | Ø16 | Ø20 | Ø25 | Ø32 |  |  |
| Rebar BSt 500 S                           | N <sub>Rk,s</sub> | [kN] | 28 | 43  | 62  | 111 | 173 | 270 | 442 |  |  |
| Partial safety factor                     | γMs               | [-]  |    |     |     | 1,4 |     |     |     |  |  |

| Combined pullout and concret   | e cone failu                           | ire in unci          | acked | concre | te C20 | /25 |     |     |     |
|--------------------------------|----------------------------------------|----------------------|-------|--------|--------|-----|-----|-----|-----|
| Size                           |                                        |                      | Ø8    | Ø10    | Ø12    | Ø16 | Ø20 | Ø25 | Ø32 |
| Characteristic bond resistance | e in uncrack                           | ed concre            | ete   |        |        |     |     |     |     |
| Dry and wet concrete           | τRk,ucr                                | [N/mm <sup>2</sup> ] | 11    | 9,5    | 9,5    | 9   | 8,5 | 8,5 | 5,5 |
| Installation safety factor     | $\gamma_2^{(1)} = \gamma_{inst}^{(2)}$ | [-]                  |       |        |        | 1,2 |     |     |     |
| Flooded hole                   | τRk,ucr                                | [N/mm <sup>2</sup> ] | 11    | 9,5    | 9,5    | 9   | 8,5 | 8,5 | 5,5 |
| Installation safety factor     | $\gamma_2^{(1)} = \gamma_{inst}^{(2)}$ | [-]                  |       |        |        | 1,4 |     |     |     |
| Factor for concrete C50/60     | Ψc                                     | [-]                  |       |        |        | 1   |     |     |     |

| $k_1^{1)}$                             | [-]                                       | 10,1                                                       |
|----------------------------------------|-------------------------------------------|------------------------------------------------------------|
| k <sub>ucr,N</sub> 2)                  |                                           | 11                                                         |
| Ccr,N                                  | [mm]                                      | 1,5h <sub>ef</sub>                                         |
| $\gamma_2^{(1)} = \gamma_{inst}^{(2)}$ | [-]                                       | see Combined pullout and concrete cone failure             |
|                                        | k <sub>ucr,N</sub> <sup>2)</sup><br>Ccr,N | k <sub>ucr,N</sub> <sup>2)</sup><br>C <sub>cr,N</sub> [mm] |

| Splitting failure          |                                        |      |                    |         |          |          |         |         |       |
|----------------------------|----------------------------------------|------|--------------------|---------|----------|----------|---------|---------|-------|
| Size                       |                                        |      | Ø8                 | Ø10     | Ø12      | Ø16      | Ø20     | Ø25     | Ø32   |
| Edge distance              | C <sub>cr,sp</sub>                     | [mm] | 1,5h <sub>ef</sub> |         |          |          |         |         |       |
| Spacing                    | Scr,sp                                 | [mm] | 3,0h <sub>ef</sub> |         |          |          |         |         |       |
| Installation safety factor | $\gamma_2^{(1)} = \gamma_{inst}^{(2)}$ | [-]  | see (              | Combine | ed pullo | ut and c | oncrete | cone fa | ilure |

<sup>1)</sup> Design according EOTA Technical Report TR 055

<sup>2)</sup> Design according EN 1992-4:2016

#### MO-H, MO-HW, MO-HS steel bonded anchor

#### **Performances** Design according to EN 1992-4 Characteristic resistance for tension loads - rebar

| Steel failure without lever arm                          |                                                  |                 |           |     |     |     | -                          |      |      |      |
|----------------------------------------------------------|--------------------------------------------------|-----------------|-----------|-----|-----|-----|----------------------------|------|------|------|
| Size                                                     |                                                  |                 | M8        | M10 | M12 | M16 | M20                        | M24  | M27  | M30  |
| Steel grade <b>4.6</b>                                   | V <sub>Rk,s</sub>                                | [kN]            | 7         | 12  | 17  | 31  | 49                         | 71   | 92   | 112  |
| Partial safety factor                                    | γMs                                              | [-]             |           |     |     | 1,  | 67                         |      |      |      |
| Steel grade <b>5.8</b>                                   | $V_{Rk,s}$                                       | [kN]            | 9         | 15  | 21  | 39  | 61                         | 88   | 115  | 140  |
| Partial safety factor                                    | γMs                                              | [-]             |           |     |     | 1,  | 25                         |      |      |      |
| Steel grade 8.8                                          | V <sub>Rk,s</sub>                                | [kN]            | 15        | 23  | 34  | 63  | 98                         | 141  | 184  | 224  |
| Partial safety factor                                    | γMs                                              | [-]             |           |     |     | 1,  | 25                         |      |      |      |
| Steel grade 10.9                                         | $V_{Rk,s}$                                       | [kN]            | 18        | 29  | 42  | 79  | 123                        | 177  | 230  | 281  |
| Partial safety factor                                    | γMs                                              | [-]             |           |     |     | 1   | ,5                         |      |      |      |
| Stainless steel grade A2-70, A4-70                       | $V_{Rk,s}$                                       | [kN]            | 13        | 20  | 30  | 55  | 86                         | 124  | 161  | 196  |
| Partial safety factor                                    | γMs                                              | [-]             |           |     |     | 1,  | 56                         |      |      |      |
| Stainless steel grade A4-80                              | $V_{Rk,s}$                                       | [kN]            | 15        | 23  | 34  | 63  | 98                         | 141  | 184  | 224  |
| Partial safety factor                                    | γMs                                              | [-]             |           |     |     | 1,  | 33                         |      |      |      |
| Stainless steel grade 1.4529                             | $V_{Rk,s}$                                       | [kN]            | 13        | 20  | 30  | 55  | 86                         | 124  | 161  | 196  |
| Partial safety factor                                    | γMs                                              | [-]             |           |     |     | 1,  | 25                         |      |      |      |
| Stainless steel grade 1.4565                             | $V_{Rk,s}$                                       | [kN]            | 13        | 20  | 30  | 55  | 86                         | 124  | 161  | 196  |
| Partial safety factor                                    | γMs                                              |                 |           |     |     | 1,  | 56                         |      |      |      |
| Characteristic resistance of group of fa                 | asteners                                         | -               | _         |     |     |     |                            |      |      |      |
| Ductility factor $k_7 = 1,0$ for steel with ru           | pture elo                                        | ngation         | $A_5 > 8$ | 3%  |     |     |                            |      |      |      |
| Steel failure with lever arm                             |                                                  |                 |           |     |     |     |                            |      |      |      |
| Size                                                     |                                                  |                 | M8        | M10 | M12 | M16 | M20                        | M24  | M27  | M30  |
|                                                          | M0                                               | [N] m]          | 15        | 30  | 52  | 133 |                            | 449  |      | 900  |
| Steel grade <b>4.6</b><br>Partial safety factor          | M <sup>o</sup> Rk,s                              |                 | 15        | 30  | 52  |     | 260<br>67                  | 449  | 666  | 900  |
| Steel grade <b>5.8</b>                                   | γMs<br>Mo-                                       | [-]<br>[N.m]    | 19        | 37  | 66  | 166 | 325                        | 561  | 832  | 1125 |
| Partial safety factor                                    |                                                  | [-]             | 19        | 37  | 00  |     | 25                         | 501  | 032  | 1120 |
| Steel grade 8.8                                          | γMs<br>M <sup>o</sup> Rk,s                       |                 | 30        | 60  | 105 | 266 | 519                        | 898  | 1332 | 1700 |
| Partial safety factor                                    | IVI <sup>-</sup> Rk,s<br>γMs                     | [13.111]<br>[-] | 30        | 00  | 105 |     | 25                         | 090  | 1332 | 1795 |
| Steel grade 10.9                                         |                                                  | [N.m]           | 37        | 75  | 131 | 333 | 649                        | 1123 | 1664 | 2240 |
| Partial safety factor                                    |                                                  |                 | 37        | 75  | 131 |     | 50                         | 1123 | 1004 | 2243 |
| Stainless steel grade A2-70, A4-70                       | γMs<br>M <sup>o</sup> Rk,s                       |                 | 26        | 52  | 92  | 233 | 454                        | 786  | 1165 | 157/ |
| Partial safety factor                                    |                                                  | [IN.III]<br>[-] | 20        | 52  | 92  |     | 4 <u>54</u><br>56          | /00  | 1105 | 1574 |
|                                                          | γMs                                              |                 | 30        | 60  | 105 | 266 | 519                        | 898  | 1332 | 1700 |
| Stainless steel grade <b>A4-80</b> Partial safety factor | M <sup>o</sup> Rk,s                              |                 | 30        | 60  | 105 |     | 33                         | 090  | 1332 | 1795 |
| Stainless steel grade <b>1.4529</b>                      | γ <sub>Ms</sub><br>M <sup>o</sup> Rk,s           |                 | 26        | 52  | 92  | 233 | 454                        | 786  | 1165 | 157/ |
| Partial safety factor                                    |                                                  | [IN.III]<br>[-] | 20        | 52  | 92  |     | 4 <u>54</u><br>25          | /00  | 1105 | 1574 |
| Stainless steel grade <b>1.4565</b>                      | γMs                                              |                 | 06        | 52  | 00  | -   |                            | 706  | 1165 | 157/ |
|                                                          | M <sup>o</sup> Rk,s                              |                 | 26        | 52  | 92  |     | 454<br>56                  | 786  | 1165 | 1574 |
| Partial safety factor Concrete pry-out failure           | γMs                                              | [-]             |           |     |     | ١,  | 00                         |      |      |      |
|                                                          |                                                  | L T 1           | 1         |     |     |     | 2                          |      |      |      |
| Factor for resistance to pry-out failure                 | $\frac{k_8}{\gamma_2^{(1)}=\gamma_{inst}^{(2)}}$ |                 |           |     |     |     | <u></u> ,0                 |      |      |      |
|                                                          | /2 <sup>-</sup> /≕γinst <sup>_/</sup>            | [-]             |           |     |     | I   | ,0                         |      |      |      |
|                                                          |                                                  |                 |           |     |     |     |                            |      |      |      |
| Concrete edge failure                                    |                                                  |                 | M8        | M10 | M12 | M16 | M20                        | M24  | M27  | M30  |
| Concrete edge failure<br>Size                            |                                                  |                 |           |     |     |     |                            |      |      |      |
|                                                          | d <sub>nom</sub>                                 | [mm]            | 8         | 10  | 12  | 16  | 20                         | 24   | 27   | 30   |
| Size                                                     |                                                  | [mm]<br>[mm]    | 8         | 10  |     |     | 20<br>, 8 d <sub>nor</sub> |      | 27   | 30   |

### MO-H, MO-HW, MO-HS steel bonded anchor

 Table C3:
 Design method EN 1992-4

#### Performances

Design according to EN 1992-4 Characteristic resistance for shear loads - threaded rod

# Table C4: Design method EN 1992-4 Characteristic values of resistance to shear load of rebar

| Steel failure without lever arm          |                  |        |           |     |     |     |     |     |     |  |  |
|------------------------------------------|------------------|--------|-----------|-----|-----|-----|-----|-----|-----|--|--|
| Size                                     |                  |        | Ø8        | Ø10 | Ø12 | Ø16 | Ø20 | Ø25 | Ø32 |  |  |
| Rebar BSt 500 S                          | $V_{Rk,s}$       | [kN]   | 14        | 22  | 31  | 55  | 86  | 135 | 221 |  |  |
| Partial safety factor                    | γMs              | [-]    |           |     |     | 1,5 |     |     |     |  |  |
| Characteristic resistance of group       | of fasteners     |        |           |     |     |     |     |     |     |  |  |
| Ductility factor $k_7 = 1,0$ for steel w | ith rupture elon | gation | $A_5 > 8$ | %   |     |     |     |     |     |  |  |

| Steel failure with lever arm             |                                        |       |    |     |     |     |     |      |      |
|------------------------------------------|----------------------------------------|-------|----|-----|-----|-----|-----|------|------|
| Size                                     |                                        |       | Ø8 | Ø10 | Ø12 | Ø16 | Ø20 | Ø25  | Ø32  |
| Rebar BSt 500 S                          | $M^{o}_{Rk,s}$                         | [N.m] | 33 | 65  | 112 | 265 | 518 | 1013 | 2122 |
| Partial safety factor                    | γMs                                    | [-]   |    |     |     | 1,5 |     |      |      |
| Concrete pry-out failure                 |                                        |       |    |     |     |     |     |      |      |
| Factor for resistance to pry-out failure | e k <sub>8</sub>                       | [-]   |    |     |     | 2   |     |      |      |
| Installation safety factor               | $\gamma_2^{(1)} = \gamma_{inst}^{(2)}$ | [-]   |    |     |     | 1,0 |     |      |      |

| Concrete edge failure        |                                                        |      |    |     |     |                        |                    |     |     |
|------------------------------|--------------------------------------------------------|------|----|-----|-----|------------------------|--------------------|-----|-----|
| Size                         |                                                        |      | Ø8 | Ø10 | Ø12 | Ø16                    | Ø20                | Ø25 | Ø32 |
| Outside diameter of fastener | dnom                                                   | [mm] | 8  | 10  | 12  | 16                     | 20                 | 25  | 32  |
| Effective length of fastener | <b>l</b> f                                             | [mm] |    |     | min | (h <sub>ef</sub> , 8 d | J <sub>nom</sub> ) |     |     |
| Installation safety factor   | fety factor $\gamma_2^{1} = \gamma_{inst}^{2}$ [-] 1,0 |      |    |     |     |                        |                    |     |     |

<sup>1)</sup> Design according EOTA Technical Report TR 055

<sup>2)</sup> Design according EN 1992-4:2016

#### MO-H, MO-HW, MO-HS steel bonded anchor

**Performances** Design according to EN 1992-4 Characteristic resistance for shear loads - rebar

| Anchor size        |                    |      | M8  | M10 | M12  | M16  | M20  | M24  | M27  | M30  |
|--------------------|--------------------|------|-----|-----|------|------|------|------|------|------|
| Uncracked concrete |                    |      |     |     |      |      |      |      |      |      |
| Tension load       | F                  | [kN] | 6,3 | 7,9 | 11,9 | 15,9 | 23,8 | 29,8 | 37,7 | 45,6 |
| Displacement       | δ <sub>N0</sub>    | [mm] | 0,3 | 0,3 | 0,3  | 0,3  | 0,4  | 0,5  | 0,5  | 0,5  |
|                    | $\delta_{N\infty}$ | [mm] | 0,5 | 0,5 | 0,5  | 0,5  | 0,5  | 0,5  | 0,5  | 0,5  |
| Shear load         | F                  | [kN] | 3,1 | 5,0 | 7,2  | 13,5 | 21,0 | 30,3 | 39,4 | 48,0 |
| Displacement       | δνο                | [mm] | 1,5 | 1,5 | 1,5  | 1,5  | 2,0  | 2,5  | 2,5  | 2,5  |
|                    | δv∞                | [mm] | 2,3 | 2,3 | 2,3  | 2,3  | 3,0  | 3,8  | 3,8  | 3,8  |
| Cracked concrete   |                    |      |     |     |      |      |      |      |      |      |
| Tension load       | F                  | [kN] |     | 5,1 | 7,4  | 13,1 | 20,5 | 24,6 |      |      |
| Displacement       | δ <sub>N0</sub>    | [mm] |     | 0,4 | 0,7  | 0,7  | 0,7  | 0,6  |      |      |

## MO-H, MO-HW, MO-HS steel bonded anchor

#### Performances

Displacement for threaded rod

| Table C6: Displacement of rebar under tension and shear load |                    |      |     |     |      |      |      |      |      |  |  |
|--------------------------------------------------------------|--------------------|------|-----|-----|------|------|------|------|------|--|--|
| Rebar size                                                   |                    |      | Ø8  | Ø10 | Ø12  | Ø16  | Ø20  | Ø25  | Ø32  |  |  |
| Uncracked concrete                                           |                    |      |     |     |      |      |      |      |      |  |  |
| Tension load                                                 | F                  | [kN] | 7,9 | 9,9 | 13,9 | 23,8 | 29,8 | 55,6 | 55,6 |  |  |
| Displacement                                                 | δ <sub>N0</sub>    | [mm] | 0,3 | 0,3 | 0,3  | 0,4  | 0,4  | 0,5  | 0,5  |  |  |
|                                                              | $\delta_{N\infty}$ | [mm] | 0,5 | 0,5 | 0,5  | 0,5  | 0,5  | 0,5  | 0,5  |  |  |
| Shear load                                                   | F                  | [kN] | 5,9 | 9,3 | 13,3 | 23,7 | 37,0 | 57,9 | 94,8 |  |  |
| Displacement                                                 | δνο                | [mm] | 0,3 | 0,4 | 0,4  | 0,4  | 0,4  | 0,5  | 0,9  |  |  |
|                                                              | δv∞                | [mm] | 0,5 | 0,6 | 0,6  | 0,6  | 0,6  | 0,8  | 1,4  |  |  |

### MO-H, MO-HW, MO-HS steel bonded anchor

## Performances

Annex C 6

Displacement for rebar

| Size                                   |                                        |                      | M10 | M12 | M16  | M20 | M24 |
|----------------------------------------|----------------------------------------|----------------------|-----|-----|------|-----|-----|
| Tension load                           |                                        |                      |     |     |      |     |     |
| Steel failure                          |                                        |                      |     |     |      |     |     |
| Characteristic resistance grade 4.6    | N <sub>Rk,s,eq</sub>                   | [kN]                 | 23  | 34  | 63   | 98  | 141 |
| Partial safety factor                  | γMs                                    | [-]                  |     |     | 2,00 |     |     |
| Characteristic resistance grade 5.8    | $N_{Rk,s,eq}$                          | [kN]                 | 29  | 42  | 79   | 123 | 177 |
| Partial safety factor                  | γMs                                    | [-]                  |     |     | 1,50 | •   |     |
| Characteristic resistance grade 8.8    | N <sub>Rk,s,eq</sub>                   | [kN]                 | 46  | 67  | 126  | 196 | 282 |
| Partial safety factor                  | γMs                                    | [-]                  |     |     | 1,50 |     | -   |
| Characteristic resistance grade 10.9   | N <sub>Rk,s,eq</sub>                   | [kN]                 | 58  | 84  | 157  | 245 | 353 |
| Partial safety factor                  | γMs                                    | [-]                  |     |     | 1,33 |     |     |
| Characteristic resistance A2-70, A4-70 | $N_{Rk,s,eq}$                          | [kN]                 | 41  | 59  | 110  | 172 | 247 |
| Partial safety factor                  | γMs                                    | [-]                  |     |     | 1,87 |     |     |
| Characteristic resistance A4-80        | $N_{Rk,s,eq}$                          | [kN]                 | 46  | 67  | 126  | 196 | 282 |
| Partial safety factor                  | γMs                                    | [-]                  |     |     | 1,60 |     |     |
| Characteristic resistance 1.4529       | N <sub>Rk,s,eq</sub>                   | [kN]                 | 41  | 59  | 110  | 172 | 247 |
| Partial safety factor                  | γMs                                    | [-]                  |     |     | 1,50 |     |     |
| Characteristic resistance 1.4565       | N <sub>Rk,s,eq</sub>                   | [kN]                 | 41  | 59  | 110  | 172 | 247 |
| Partial safety factor                  | γMs                                    | [-]                  |     |     | 1,87 |     |     |
| Combined pull-out and concrete cone    | e failure                              |                      |     |     |      |     |     |
| Dry and wet concrete                   |                                        | [N/mm <sup>2</sup> ] | 3,5 | 3,5 | 3,5  | 3,5 | 3,5 |
| Installation safety factor             | $\gamma_2^{(1)} = \gamma_{inst}^{(2)}$ | [-]                  |     |     | 1,2  |     |     |
| Flooded hole                           |                                        | [N/mm <sup>2</sup> ] | 3,5 | 3,5 | 3,5  | 3,5 | 3,5 |
| Installation safety factor             | $\gamma_2^{(1)} = \gamma_{inst}^{(2)}$ | [-]                  |     |     | 1,4  |     |     |
| Shear load                             |                                        |                      |     |     |      |     |     |
| Steel failure without lever arm        |                                        |                      |     |     |      |     |     |
| Characteristic resistance grade 4.6    | $V_{Rk,s,eq}$                          | [kN]                 | 7   | 10  | 23   | 30  | 40  |
| Partial safety factor                  | γMs                                    | [-]                  |     |     | 1,67 |     |     |
| Characteristic resistance grade 5.8    | $V_{Rk,s,eq}$                          | [kN]                 | 9   | 13  | 28   | 38  | 51  |
| Partial safety factor                  | γMs                                    | [-]                  |     |     | 1,25 |     |     |
| Characteristic resistance grade 8.8    | $V_{Rk,s,eq}$                          | [kN]                 | 14  | 21  | 45   | 61  | 81  |
| Partial safety factor                  | γMs                                    | [-]                  |     |     | 1,25 |     |     |
| Characteristic resistance grade 10.9   | V <sub>Rk,s,eq</sub>                   | [kN]                 | 18  | 26  | 56   | 76  | 101 |
| Partial safety factor                  | γMs                                    | [-]                  |     |     | 1,50 |     |     |
| Characteristic resistance A2-70, A4-70 | $V_{Rk,s,eq}$                          | [kN]                 | 12  | 18  | 39   | 53  | 71  |
| Partial safety factor                  | γMs                                    | [-]                  |     |     | 1,56 |     |     |
| Characteristic resistance A4-80        | V <sub>Rk,s,eq</sub>                   | [kN]                 | 14  | 21  | 45   | 61  | 81  |
| Partial safety factor                  | γMs                                    | [-]                  |     |     | 1,33 |     | -   |
| Characteristic resistance 1.4529       | $V_{Rk,s,eq}$                          | [kN]                 | 12  | 18  | 39   | 53  | 71  |
| Partial safety factor                  | γMs                                    | [-]                  |     |     | 1,25 |     |     |
| Characteristic resistance 1.4565       | V <sub>Rk,s,eq</sub>                   | [kN]                 | 12  | 18  | 39   | 53  | 71  |
| Partial safety factor                  | γMs                                    | [-]                  |     |     | 1,56 |     |     |
| Factor for annular gap                 | $lpha_{\sf gap}$                       | [-]                  |     |     | 0,5  |     |     |

Table C7: Characteristic values of resistance under seismic action category C1 for threaded rods

<sup>1)</sup> Design according EOTA Technical Report TR 055
 <sup>2)</sup> Design according EN 1992-4:2016

Note: Rebars are not qualified for seismic design

#### MO-H, MO-HW, MO-HS steel bonded anchor

#### Performances

Reduction factors for seismic design